SR1066

Harvester

Instruction manual

Sampo Rosenlew Ltd
P.O.Box 50
FI–28101 PORI, FINLAND
www.sampo-rosenlew.fi
Introduction

The purpose of this book is to familiarize the operator with the forest harvester. It is of utmost importance that the operator becomes familiar with the structures, adjustments and maintenance of his harvester. Compliance with the advice and instructions given in this manual guarantees the best results at the lowest costs.

This manual provides descriptions of as well as operating and maintenance instructions for the forest harvester. The other manuals you will find useful when using and servicing your forest harvester include the instructions and spare parts catalogue for the harvester head, the instructions for the harvesting computer, the instructions for the crane, the instructions for the base machine control system as well as the engine manual and the spare parts catalogue.

Have these manuals always in the cab, in the special pocket reserved for them, for convenient reference. If, for some reason, they are not supplied together with the harvester, send immediately for new manuals.

Item “Technical Specifications” has a description of all the features of the forest harvester in accordance with the delivery contract. It does, however, not include retro-fitted accessories.

The Manufacturer reserves the right to modify the structure, adjustments or accessories of the harvester as well as the service and maintenance instructions without further notice.

Sampo Rosenlew Ltd
Table of contents

Introduction ... 3
Safety precautions ... 5
Marking of danger points .. 10
Type marking ... 12
Technical specifications .. 13
Certificate on conformity to the EU directives ... 14
Guarantee ... 15
Structure and functions of the forest harvester ... 16
Cut-away picture of the forest harvester ... 17
Operator control instruments .. 18
Signs and symbols ... 25
Operation and Adjustments .. 26
Hydraulics .. 36
Electrical instruments ... 38
Parameters in the IQAN control system ... 42
Service and maintenance ... 52
Lubrication .. 63
Summary of periodical procedures .. 65
Storage when not in use .. 66
Recommended accessories ... 67
Hydraulic diagram ... 68
Electric diagram .. 70
Safety precautions

Read carefully these instructions on safety and use before starting to operate the harvester. The time spent becoming familiar with the instructions now will save you money or may even spare you from injury.

Before accepting the delivery of the harvester, make sure it conforms to the delivery contract. Do not fit the harvester with any accessories not approved of by the Manufacturer. The Manufacturer of the forest harvester is not responsible for any damage or injury caused by such accessories either to people or property. If any information provided in this manual contradicts the laws and regulation of the country in which the harvester is used, local regulations are to be followed.

1. Transportation on a vehicle or by rail

Make sure you know the measurements and weights of the harvester and the transporter. Comply with any regulations concerning transportation.
Use increased tyre pressure, minimum of 3 bar to improve stability.
Fix the harvester securely to the transporter.
For road transport lower the crane fully and fix it to the transporter.

2. Driving in traffic

On public roads a transporter shall be used to move the harvester. Remember that the harvester has articulated steering.
Test brake functions before driving on the road.
Wear the safety belt.
Never drive downhill with the gear in neutral.
Only shift gear on level ground.
Never carry passengers on the harvester.
Never use the harvester for transporting goods.
If the harvester fault diagnostics detects a malfunctioning brake or drive pedal, the driver can still drive the harvester in for a service, but at a low speed and with slow crane movements.

3. Forest harvesting

Get familiar with the structure of the forest harvester by studying the manual before starting harvesting.
Make sure the protective guards are properly attached and in good condition.
Sound the signal to warn people around the harvester before starting the engine.
Never use the forest harvester for anything except harvesting of trees.
Manual feeding of trees into the harvester head is forbidden.
Before starting the engine and moving, make sure nobody is standing too near.
Fasten the seat belt. This is important, particularly when driving across steep terrain.
Test the brakes as soon as you start, and stop immediately if the brakes or steering operate defectively.
Never adjust the seat or joysticks while driving.
Never leave the cab while the harvester is moving.
Never leave the engine running unattended.
Beware of the crane and the moving parts in the harvester head.
In cold weather heat the oil by circulating it through the harvester head, too, at low revolutions and low pressure before starting work. Drive carefully on hillsides; the harvester may overturn, particularly with the crane on the downhill side.

The forest harvester cab is a safety cab. Never saw with the guide bar towards the cab. A loosened saw chain is dangerous and may hurtle through the window.

The harvester has two exits. The left-side door is the normal exit. The right-hand side window may be used as an emergency exit when the lock has been opened. Always before getting in the cab, open or ensure from the outside that the lock on the right-side door is unlocked.

When the harvester is in use, the emergency exits must be closed. For safety reasons their construction must not be changed. When driving on frozen rivers or lakes, make sure the ice is strong enough. When driving on ice, keeping doors open helps exiting cabin. In this case beware of tight curves that may cause rear tire to hit the door.

Note the recommended safety distances when harvesting under power lines.

Stop the engine before cleaning or servicing the harvester.

Stop the harvester and the engine immediately if there is an alarm or any abnormal sounds or smells. Find out the reason for them, and solve the problem before carrying on with harvesting.

If there are leaking hydraulic connections, tighten the connections and wipe the oil off the frame and underpan.

Support or lock the crane and the harvester head before going beneath them.

Never clean the harvester without proper equipment.

When leaving the harvester, lower the crane, stop the engine, remove the ignition key, lock the door and turn the master switch to its zero position.
SAFETY DISTANCES WHEN HARVESTING UNDER OPEN-WIRE POWER LINES

The minimum space between the harvester and power lines with voltage must be in accordance with the enclosed illustration.

Low-voltage power lines 230/400V can be distinguished from high-voltage lines over 1 kV by the smaller insulators and the fact that there are usually four low-voltage lines. A bundle assembled aerial cable shall be treated the same way as an open-wire cable.

In case the height or voltage of the power line is difficult to estimate, the electrical company shall be consulted.

In case of accident

If there is an accident despite all precautions, keep calm and consider carefully what to do. First try to reverse the harvester away from the power line. If there are other people near, ask them to check that the harvester is not stuck in the line. If the harvester is just leaning against the lines, try to drive it away from them. Follow the advice from the people nearby. Due to their own safety, they shall stay a minimum of 20 metres away from the harvester touching the power line.

If the harvester cannot be driven off, and you have to leave the machine, jump down with your feet together in order not to touch the harvester and the ground simultaneously. Do not make yourself a conductor through which electricity can pass; the real danger lies in touching the harvester and the ground simultaneously.

Get away from the harvester jumping either with your feet together, or with only one foot on the ground at a time. Otherwise the electric field on the ground may create a fatal electric current between your legs. You will be safe at a distance of 20 metres from the harvester.

Beware of broken power lines lying on the ground.

A harvester touching a power line may catch fire. Leave the harvester immediately if smoke starts coming from the tyres.

Make sure the harvester will be guarded at a safe distance. Do not try to get on the harvester even if the power in the power lines may seem to have gone off.

Remember that open-wire lines never have
a “blown fuse”, but they are always dangerous unless made dead by an electrician. Even if the power went off, it might come back on in a while due to technical reasons. This may be repeated several times. Contact the electric company and inform them about the exact site of the accident. By doing this, any risk can be eliminated and the fault repaired. Ask the electrical company for advice and follow it. Inform them about any contact with power lines even if there was no actual damage.

4. Repair and service
Always keep the harvester in good condition. Check the condition of fast moving parts daily. Pay special attention to the transmission mechanism and the rotating parts in the harvester head. Replace defective parts before they become dangerous. Clean, repair and service the harvester with the transmission and engine off and the ignition key off the ignition switch and main switch off. The harvester head has many danger points. Read the harvester head manual to familiarize yourself with them. On some models turning of the measuring wheel by hand makes the knives, tracks and rolls close. This is extremely dangerous if the engine is running or there is pressure in the hydraulic accumulator of the harvester head. Do not go near the harvester head, particularly the knives, tracks and rolls, with the engine running. Before welding, disconnect the battery cables, input cable of the diesel engine control unit (the left hand side cable under the cover of the control unit attached to the engine), all the cables to the PC processor, the cables of the measuring device head module (MCC) and the cab MCI module, connector of the large wiring harness between the frames and the central unit cables of the optional fire extinguishing system. Always have the earth cable of the welding set near where welding is done. Do not use inappropriate tools to connect and disconnect the battery. Do not make an open fire or smoke near the battery. Handle the battery acids with care. Do not add air in the tyres without a pressure gauge due to risk of explosion. Do not add coolant with the engine running. Do not remove the radiator cap from an overheated engine. Beware of hot surfaces of the engine and especially exhaust pipe. Do not refuel with the engine running. Do not smoke while fuelling. Do not adjust the hydraulic working pressure without a pressure gauge due to possible injury and damage to the components. When servicing the hydraulics, be aware of the high pressure in the system. Make sure there is no pressure in the system, not in the head pressure accumulator, either, before disconnecting the connectors. Never use over-sized fuses; they involve risk of accident. Never start the harvester with anything but the ignition key. When refitting a wheel, tighten the fixing screws to the correct torque. Do not make any such structural changes or additions to the harvester that would make it less safe. Tow the harvester only from designated points.
5. Local laws and regulations

Before driving the harvester on a public road, make sure that harvester is correctly equipped and applies to the local regulations and laws given for such a vehicle.

Machine operator have to be trained to drive and use harvester safely.

6. Fire safety

Two factors are needed to start a fire: flammable material and ignition. Oxygen is always available. In the forest highly flammable dust accumulates in and on the harvester. Clean the harvester periodically. Oil and fuel leaks also increase the risk of fire. Repair any detected defects immediately. The engine and the exhaust pipes, the electric system in case of a short circuit and overheated brakes pose a real risk of fire.

The harvester comes with two 6-kilo hand extinguishers. They are stored above the rear wheel inside the side guard that opens rearwards. The extinguishers shall be inspected every 6 months by an authorized service outlet.

The harvester may be equipped with a semi-automatic fire extinguishing system. Make sure to comply with the manufacturer’s instructions when using the system.

This symbol in The manual refers to a special risk involved in taking a certain measure, due to which extra caution shall be practised.
Marking of danger points

Although an effort has been made to build the forest harvester as safe to use as possible, there are certain risks involved in its use. These are to be kept in mind when operating the harvester.

The danger points have been marked on the harvester using danger symbols. On the following page you will find the key to these symbols. The danger symbols are based on the international ISO 11684 standard.

Danger symbols

<table>
<thead>
<tr>
<th>Danger</th>
<th>To avoid danger</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Subject to danger due to insufficient information</td>
<td>Read the manual before starting the harvester</td>
<td></td>
</tr>
<tr>
<td>A raised part may fall down</td>
<td>Support raised parts before going under them</td>
<td></td>
</tr>
<tr>
<td>Gap in belt drive</td>
<td>Stop the engine and remove the ignition key before removing any guards</td>
<td></td>
</tr>
<tr>
<td>Getting entangled in moving parts</td>
<td>Keep at a safe distance from jointed components</td>
<td></td>
</tr>
<tr>
<td>Falling of the machine or of objects handled with it</td>
<td>Keep at a safe distance from the harvester, the crane, the head and the wood handled</td>
<td></td>
</tr>
<tr>
<td>Electric shock</td>
<td>Keep at a safe distance from power lines. See the safety distances above</td>
<td></td>
</tr>
<tr>
<td>Danger</td>
<td>To avoid danger</td>
<td>Symbol</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--------</td>
</tr>
</tbody>
</table>
| Fire | In case of fire:
- turn off the engine
- turn off the main power
- extinguish the fire
- get help if necessary | ![Symbol](image1) |
| Fire | Extinguish the fire with the fire extinguisher stored under the guard marked with this sticker. | ![Symbol](image2) |
| Service measures | Before starting of service:
- turn off the engine
- turn off the main power
- when servicing the harvester head, remove pressure from the pressure accumulator as instructed | ![Symbol](image3) |
| Safety belt not worn | Always wear a properly adjusted safety belt while working and driving on the road | ![Symbol](image4) |
| Normal exit not available | Open the handle on the right-hand door and exit through the open door. Before starting work make sure that emergency exit is unlocked also from the outside. | ![Symbol](image5) |
| Refrigerant | Leaking refrigerant may cause frostbite | ![Symbol](image6) |
Type marking

When ordering spare parts or service, always quote the type marking and number shown on the machine plate. When ordering engine parts, also quote the engine number.

Write down the serial numbers of the harvester head and the engine on this page (and in the spare parts catalogue).

Fill in the serial numbers of the crane and the harvester head

Engine number

Note! Left side of the forest harvester = The side of the cab with the stairs
Right side of the forest harvester = The side with the side instrument panel
The base forest harvester with articulated steering includes: the cab, gear box, crane valves, and crane on the front frame, the engine, pumps and tanks on the rear frame.

SR1066

Technical specifications

<table>
<thead>
<tr>
<th>Weight</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum permissible weight (ROPS)</td>
<td></td>
</tr>
<tr>
<td>Working weight.</td>
<td>14,000 kg</td>
</tr>
<tr>
<td></td>
<td>16,000 kg</td>
</tr>
</tbody>
</table>

Main Dimensions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Length without crane</td>
<td>5.9 m</td>
</tr>
<tr>
<td>Width</td>
<td>2.6 – 3.0 m</td>
</tr>
<tr>
<td>Height in transport position</td>
<td>3.5 m with cab tilt</td>
</tr>
<tr>
<td></td>
<td>3.15 – 3.6 m with a fixed cab</td>
</tr>
<tr>
<td>Ground clearance</td>
<td>0.6 m</td>
</tr>
<tr>
<td>Outermost turning radius (with 600-mm tyres)</td>
<td>4.72 m</td>
</tr>
</tbody>
</table>

Engine

- **power**: 125 kW/2,200 rpm
- **fuel tank**: 330 l

Transmission

- **Traction hydraulics pump**: 155 l / min & 420 bar
- **Rear wheels get the oil from the working pump**: 6,370 cc
- **Rear wheels with hub motors and speed reduction gear**: 90 cc
- **Front axle drive motor in the gearbox**: 0 – 4.5 km/h
- **Three speed ranges forward and backward**: 0 – 7.4 km/h
- **3rd gear**: 0 – 17 km/h

Tyres

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Front</td>
<td>600/65 – 34 or 700/55 - 34</td>
</tr>
<tr>
<td>Rear</td>
<td>600/65 – 34 or 700/55 - 34</td>
</tr>
</tbody>
</table>

Hydraulic system

- **Pump in working hydraulics**: 418 l/min / 2,200 r/min & 250 bar
- **Load sensing, programmable electric joystick control (IQAN)**
- **Oil tank**: 220 l

Electric System

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>24 V</td>
</tr>
<tr>
<td>Battery</td>
<td>2 x 145 Ah</td>
</tr>
<tr>
<td>Charging generators</td>
<td>2 x 100 A</td>
</tr>
<tr>
<td>Working lights</td>
<td>20</td>
</tr>
</tbody>
</table>

Crane

- **Operating range**: e.g. Foresteri H1395 / H13105
- **Lift gross**: 9.5 – 10.5 m
- **Crane weight**: 154 kNm
- **Lift gross**: 1,900 / 1,980 kg
- **Crane weight**: e.g. Keto 51 – 150, Foresteri 20 – 25 with a 2- or 3-hose hydraulic system
- **Max. delimbing diameter**: 350 - 550 mm
- **Weight max**: 350 - 550 mm
- **Max. delimbing diameter**: 350 - 550 mm
- **Weight max**: 900 kg

Harvester head

- **Max. delimbing diameter**: 350 - 550 mm
- **Weight max**: 900 kg

Brakes

- At the front hydraulically controlled mechanical differential lock
- At the rear negative multi-disc brakes

Cab

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Noise level</td>
<td>71 dB (A)</td>
</tr>
<tr>
<td>Windows</td>
<td>Lexan Margard polycarbonate</td>
</tr>
<tr>
<td>Harvesting computer</td>
<td>Mitron IT or PC, EPEC</td>
</tr>
<tr>
<td></td>
<td>a 4-wire CAN route</td>
</tr>
</tbody>
</table>

- **Quiet safety cab (FOPS, ROPS, OPS)**
CERTIFICATE ON CONFORMITY TO THE EU DIRECTIVES

Manufacturer
Sampo-Rosenlew Ltd
Konepajanranta 2A, P.O.Box 50
28101 Pori Finland

Collector of technical spec:
Jari Karén
Address:
Sampo-Rosenlew Ltd
Konepajanranta 2A, P.O.Box 50
28101 Pori Finland

Description of the machine: Forest harvester SR 1066
• complies with the machinery directives (2006/42/EC) and requirements of the national regulations set into force by that.
• complies with the requirements specified in the following machinery directives:
 97/68/EEC directive on diesel engine exhaust fumes
 89/336/EEC directive on electro-magnetic compatibility

The machinery has been designed in conformity with the following international standards:

SFS-EN-ISO 12100 Safety of machinery. Basic concepts, general principles for design.
SFS-EN 14861 Forest machinery Self propelled machinery - Safety requirements

29.12.2009 Pori

Jari Prihti
Guarantee

Sampo Rosenlew Ltd, later called the Manufacturer, grants a guarantee regarding defects in the material and workmanship.

1. The guarantee period starts as soon as the harvester has been delivered to the customer.

2. The guarantee does not cover:
 - freight and postage costs
 - transport damage
 - damage due to carelessness, misuse or injury
 - damage due to impurities in the hydraulic oil or the use of wrong type of oil
 - damage due to non-compliance with the operating instructions
 - damage due to neglected periodical maintenance procedures
 - damage caused by spare parts not approved of by the Manufacturer
 - damage due to the natural wear of parts; parts and materials likely to show natural wear, such as:
 - rubber hoses
 - light bulbs, sensors
 - chain and guide bar
 - tyres
 - belts and chains
 - windscreen wipers
 - fuel, oil, coolant and brake fluids
 - filter cartridges
 - packing and gaskets
 - electric cables
 - injection nozzles
 - windows and guards made of polycarbonate
 - damage due to measures taken by the purchaser affecting the quality and structure of the harvester. Increasing of the hydraulic working pressure and pressure limits may cause damage;
 - indirect damage, such as
 - loss of output or down time
 - compensation claims submitted by a third party
 - overtime and holiday compensations
 - damage to property caused by the equipment
 - if there is a change in the ownership of the harvester

3. When working in cold conditions, the guarantee is valid only when the outdoor temperature does not drop below -25°C.

4. Any compensation claims under guarantee shall be submitted to the Manufacturer in a complete form within two weeks of the damage.

5. The guarantee compensation is limited, and the Manufacturer shall only replace the defective component unless otherwise agreed with the customer.

6. The components replaced under guarantee are the property of the Manufacturer, and they shall be returned to the Manufacturer upon request. Otherwise they shall be scrapped.

7. The guarantee on components delivered or repaired during the guarantee period will run out at the same time as the guarantee on the harvester.
Structure and functions of the forest harvester

Structure
The Sampo 1066 forest harvester has been designed to carry out later thinning and partly also final felling.

The forest harvester has articulated steering. The crane, gearbox and cab are located on the front frame. The engine, hydraulic pumps and oil and fuel tanks are on the rear frame. The harvester is steered and tilted by means of a joint. The inner rims of both the front and rear tyres go along the same tracks. The harvester is extremely nimble as the turning angle of the frame joint is 50° and the turning radius only 4.7 m. Depending on the tyres, the width varies between 2.5 – 3.0 m. Although the harvester properties have been designed for different types of thinning, it has sufficient capacity for final felling as well.

Harvester head
The harvester head cuts and fells the tree. After that the tree is delimbed and cut into a pre-set length. Due to the large working pump 1,400-1,500 RPM are enough. Too high working revolutions are heavy on petrol. The Sampo harvester is supplied with alternative harvester heads. 3-hose system in hydraulics and the CAN route with its easily detachable connectors used in controlling of the head make it easy to change heads. There are also different harvesting computers to choose from. The basic version is either the EPEC 4W30 or 4W50 (both with cubic volume calculation). When necessary, an on-board computer with a GPS and a data transfer function can be selected.

For further harvesting instructions, consult the harvesting computer and harvesting head manuals.
Cut - away picture of the forest harvester

1. Final drive
2. Gearbox
3. Hydraulic motor
4. Traction hydraulics pump
5. Working hydraulics pump
6. Hub motor
7. Fuel tank
8. Radiator
9. Oil cooler
10. Intercooler
11. Hydraulic valve
12. Oil tank
13. Air filter
14. Engine
15. AC condenser
Operator control instruments

Equipment on the instrument panel (fig. 1)

A Engine thermometer
B Thermometer for hydraulic oil
C Harvesting computer display
D Programming wheel of the harvesting computer
E Signal lights
H Throttle lever
J Ignition, starter (and electric stop)
K Emergency stop
L Hour gauge
M Fuel gauge
N Heater thermostat
O Fan speed regulator
T Phone outlet
V IQAN system display
X AC regulator
Y Engine heater display

Switches on the instrument panel (fig. 2)

A Alarm reset
B Frame lock
C Working brakes
D Parking brake
E Sound signal
F Windscreen wiper
G Windscreen washer
H Glow signal light
J Harvesting computer
K Headlights
L Seat heating
M Working lights, general
N Working lights, additional
O Working lights, doors
P Emergency flasher
Q Engine diagnosis switch & alert light
R 4WD
S Differential lock
T Dip switch
U Turning signal
V Cab tilting automation
X Cab manual drive forward/backward
Y Cab manual drive left/right
Z Master switch
Equipment on the ceiling (fig. 3)

A) Alarm light (yellow)
B) Fire extinguishing system light (red)
C) Indoor light
D) Speaker
E) Radio

Signal lights (fig. 4)
The harvester has signal lights to indicate:

A) lowering of engine oil pressure
B and C) lowering of charge
D) turning signal on
E) overheating of hydraulic oil
F) overheating of engine
G) blocked air filter in engine
H) high beam on
I) blocked suction / return filter in hydraulic oil
K) blocked return filter in hydraulic oil
L) level of hydraulic oil

When the signal light comes on, it indicates the location of the operation or malfunction.
Vertical levers (fig. 5)

Crane control lever, left

V1 Outer boom inwards
V2 Outer boom outwards
V3 Crane turn left
V4 Crane turn right

Crane control lever, right

O1 Crane lift up
O2 Crane lowering down
O3 Frame steering left / rotator turn
O4 Frame steering right / rotator turn

Mini levers (fig.6)

Crane control lever, left

V1 Outer boom inwards
V2 Outer boom outwards
V3 Crane turn left
V4 Crane turn right
V5 Crane extension in
V6 Crane extension out

Crane control lever, right

O1 Crane lift up
O2 Crane lowering down
O3 Frame steering left / rotator turn
O4 Frame steering right / rotator turn
O5 Head open / up
O6 Head closed / down
Switches on the push button boards on mini joysticks (fig. 7)

Left-side push button board

A Saw
B Feed forward
C Feed backward
D Vacant
E Colour marking and stump treatment
F Tree species
G Opening of tracks
H Opening of knives
I Opening of rear knife
J Crane tilt forward/backward
K Selection of driving direction
F4 Driving backwards (when button depressed)

Right-side push button board

A Saw
B Feed forward
C Feed backward
D Vacant
K Pre-set measurements
L Harvester head up / down
M Harvester head open / closed
N Harvesting/driving switch
Joystick switches on vertical levers with Motomit harvesting computer (fig. 7a)

Vertical lever switches when the harvester head does not have a rear knife B.

1 Tilt up / down
2 Knives open
3 Tracks / rolls open
4 Slow feed forward
5 Slow feed backward
6 Driving direction
7 Programmable (urea)
8 Fast feed forward
9 Fast feed backward
10 Head open / closed
11 Saw
12-15 Programmable (tree species 1-4)
16-27 Programmable (preset)

A Drive / harvest switch

Vertical lever switches when the harvester head has a rear knife C.

1 Knives open
2 Tracks / rolls open
3 Tilt up / down
28 Rear knives open

Functions displayed on this list are usually programmed in the programmable switches. However, it is possible to tailor the programming for each customer.
Joystick switches on vertical levers with Epec harvesting computer (fig. 8)

Left-side joystick
A Extension out
B Extension in
C Harvester head up / down
D Opening of knives
E Opening of tracks or rolls
F Saw
G Driving direction (forward in the mid position)
H One wipe of the windscreen
I Stump treatment
J Driving speed adjustment

Right-side joystick
K Crane tilt table forward
L Crane tilt table backward
M Feed forward
N Feed backward
O Harvester head open / closed
P Rear knife
Q Harvest / drive switch
R Pre-set measurements
S Tree species
Joysticks switches on the EME levers (fig. 8a)

Left-side joystick

1 Saw
2 Programmable (tree species 1)
3 Programmable (tree species 2)
4 Programmable (tree species 3)
5 Programmable (tree species 4)
6 Driving direction backwards
7 Driving direction forward
8 Single wipe
9 Feed backward
10 Feed forward
11 Vacant
12 Slow feed backward
13 Slow feed forward
14 Vacant
15 Tilt up
16 Tilt down
17 Vacant
18 Crane extension in
19 Crane extension out
20 Vacant

Right-side joystick

21 Programmable (quality 1)
22 Programmable (quality 2)
23 Programmable (quality 3)
24 Programmable (quality 4)
25 Programmable (quality 5)
26 Programmable (quality 6)
27 Programmable (color test)
28 Programmable (shift)
29 Programmable (new frame)
30 Programmable (reset)
31 Head open
32 Head closed
33 Vacant
34 Knives open
35 Tracks / rolls open
36 Rear knife open
37 Programmable (up)
38 Programmable (down)
39 Programmable (cross-cutting length)
40 Boom front tilt back
41 Boom front tilt front
42 Vacant
A Drive / harvest switch
Signs and symbols

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Glow</td>
</tr>
<tr>
<td></td>
<td>Hour gauge</td>
</tr>
<tr>
<td></td>
<td>Suction filter</td>
</tr>
<tr>
<td></td>
<td>Pressure filter</td>
</tr>
<tr>
<td></td>
<td>Return filter</td>
</tr>
<tr>
<td></td>
<td>Hydraulic oil level</td>
</tr>
<tr>
<td></td>
<td>Hydraulic oil temp.</td>
</tr>
<tr>
<td></td>
<td>Fuel</td>
</tr>
<tr>
<td></td>
<td>Seat heating</td>
</tr>
<tr>
<td></td>
<td>Windscreen washer</td>
</tr>
<tr>
<td></td>
<td>Ignition lock</td>
</tr>
<tr>
<td></td>
<td>Diesel engine stop</td>
</tr>
<tr>
<td></td>
<td>Oil pressure</td>
</tr>
<tr>
<td></td>
<td>Charge</td>
</tr>
<tr>
<td></td>
<td>Engine revolutions</td>
</tr>
<tr>
<td></td>
<td>Gear diagram</td>
</tr>
<tr>
<td></td>
<td>Sound signal</td>
</tr>
<tr>
<td></td>
<td>Turning signal</td>
</tr>
<tr>
<td></td>
<td>Working light</td>
</tr>
<tr>
<td></td>
<td>Windscreen wiper</td>
</tr>
<tr>
<td></td>
<td>Phone</td>
</tr>
<tr>
<td></td>
<td>Parking light</td>
</tr>
<tr>
<td></td>
<td>Fan</td>
</tr>
<tr>
<td></td>
<td>Air conditioning</td>
</tr>
<tr>
<td></td>
<td>Rotating flasher</td>
</tr>
<tr>
<td></td>
<td>Emergency flasher (red symbol)</td>
</tr>
<tr>
<td></td>
<td>Heat alarm for coolant</td>
</tr>
<tr>
<td></td>
<td>Headlights, dipped</td>
</tr>
<tr>
<td></td>
<td>Headlight, full</td>
</tr>
<tr>
<td></td>
<td>Indoor light</td>
</tr>
<tr>
<td></td>
<td>Brake</td>
</tr>
<tr>
<td></td>
<td>Joint lock</td>
</tr>
<tr>
<td></td>
<td>Differential lock, front</td>
</tr>
<tr>
<td></td>
<td>Air filter</td>
</tr>
<tr>
<td></td>
<td>4WD</td>
</tr>
<tr>
<td></td>
<td>Harvesting computer</td>
</tr>
<tr>
<td></td>
<td>Headlights</td>
</tr>
<tr>
<td></td>
<td>Emergency exit</td>
</tr>
<tr>
<td></td>
<td>Engine diagnosis light (orange symbol)</td>
</tr>
<tr>
<td></td>
<td>Master switch (electric)</td>
</tr>
</tbody>
</table>
Operation and Adjustments

The harvester functions have been divided into two different functioning environments: harvesting in forest and longer-range driving. The difference between these operating environments is in automation. With the harvesting / driving switch (keyboard or on instrument panel (EME)) in the harvesting position, the harvester head can always be rotated using the right-side joystick with the drive pedal in its mid position. When depressing the drive pedal, the right-side joystick starts to steer the frame thus enabling a quick and efficient change from harvesting to driving towards the next tree.

Both the brakes and the frame lock can be made to function automatically depending on the drive pedal position. When depressing the frame lock switch (fig 2, switch B) and the working brake switch (fig 2, switch C) in their forward position, the working brakes and the frame lock get always engaged when the drive pedal is in its mid position. Correspondingly when depressing the drive pedal, the working brakes and the frame lock get disengaged. This keeps the harvester stationary and stable during harvesting, but allows nimble moving towards the next tree.

Doorswitch

When the left side door is open, the crane movements, frame steering, drive and head movements are switched off. Note, in this case steering does not work and some models of harvesting heads may move back to the resting position, in other words close. After disconnection by the door switch harvester head is reset back to functional status as follows:

- Press ENTER from the Harvesting computer
- Select the service menu, and then press ENTER
- Click Reset, and then press ENTER
- Select the switch on harvester head current menu and then press ENTER
- Close the head, and then press ENTER
- Press the ESC button twice

The printer of the harvesting computer has its own power switch. Turn it on when you want to print. When printing, the printer must be horizontally positioned.

Joystick positions can be adjusted (fig. 10)

The positions of the crane joysticks and seat armrests can be adjusted at several points. To facilitate entering and leaving the cab, the joystick near the door can be turned both up/down and sideways. After adjustment it is important to lock the positions of the joystick and the armrest to prevent unwanted movements.
Seat has several adjustments (fig. 11)

1. To adjust the fore and aft position of the seat, lift lever A and move the seat in the required direction.
2. Adjust the height using forks B at the front and back of the seat.
3. Adjust the suspension using lever C.
4. Adjust the backrest angle using lever D.

Air suspended seat has more adjustments (fig. 12)

1. To adjust the fore and aft position, unlock lever A and move the seat in the required direction.
2. Adjust the height and fore/aft tilt by pressing levers B on the side of the seat and lifting/depressing the front or rear of the seat.
3. Adjust the seat suspension pneumatically by pressing button C.
4. Adjust the backrest angle using lever D.
Brakes while driving and harvesting (fig. 13)

The rear wheels of the harvester have negative hydraulic multi-disc brakes A. Braking power is generated by springs, and the brakes are released hydraulically.

The front axle has disc brakes B, which operate on the front wheels through the drive shafts. Disc brakes can be used both hydraulically and by means of the brake pedal. With the gear engaged, hydrostatic drive transmission automatically brakes when the drive pedal goes toward its mid position.

A triple-position switch in the cab (fig 2, switch C) mainly controls the brakes. It controls the working brakes both at the front and rear. Using the switch the brakes can be engaged, disengaged and shifted to their automatic position hydraulically. In their mid position the brakes are always engaged, and when depressed all the way back they are always disengaged. In their forward position, that is the automatic position, the brakes operate depending on the position of the drive pedal.

In normal harvesting or when driving on hilly roads, the brake switch should be in its automatic position.

In the cab there is also brake pedal C, which can be depressed to generate braking power on the brake discs comparable to pedal power. When slight braking power is generated at the front either by the brake pedal or hydraulically, the rear brakes get engaged. Therefore depressing the brake pedal generates the same braking power as hydraulic braking.

For safety reasons both the front and the rear working brakes get engaged if the engine stops unintentionally, e.g. due to overload. This happens even with the brakes in their off position. The spring-loaded brakes at the rear become engaged automatically as there is no driving power to engage the brakes. The pressure in the hydraulic accumulator keeps the front brakes engaged, if the engine stops unintentionally. The front working brakes do not remain engaged if the engine is switched off using the ignition key. The reason for this is to prevent the harvester from rolling downhill in case the hydraulic accumulator becomes discharged during long-term parking. If this were not the case, the harvester could be parked on such steep ground that even the front working brake were needed to keep the harvester stationary. With the hydraulic accumulator becoming discharged in the long term, the braking power of the front working brake decreases, and the harvester can roll downhill.
Parking brake (fig 14)
Parking brake D is operated using a dual-position switch (fig 2, switch C). The parking brake engages the spring-loaded handbrake in the front axle gearbox and the spring-loaded working brakes at the rear. The harvester cannot be driven with the parking brake on. This prevents the parking brake from being engaged unintentionally. The parking brake gets engaged automatically when the engine stops or is switched off. At the same time the rear working brakes get engaged to function as a parking brake. Switching off of the engine disengages the front working brakes.

Frame lock
The frame lock operates similarly to the working brakes. Depending on the position of the frame lock switch, the dual-function cylinders lock the frames together, allow them to rotate independently of each other, or operate in an automatic position in the same manner as the brakes. With the frame lock switch (fig 14, switch A) in its mid position, the frame lock is always engaged, and when depressed backward, the frame lock is disengaged. Normally when harvesting, the frame lock switch should be in its automatic position, i.e. in its front position.

Traction transmission
Engine power is transmitted to the consecutive work and drive pumps by means of a torsional coupling. From the pump to the hydraulic motor of the gearbox on the front axle power is transmitted by means of closed loop hydraulics. From the gearbox power is transmitted to the front wheels by means of drive shafts and final drives.

The gearbox has three speed ranges (1, 2, 3) and neutral (N). The gear is selected using push buttons A (fig. 14). 1st gear (button 1) is intended for harvesting, 2nd gear (button 2) for driving in the forest and 3rd gear (button 3) for driving on the road. Gears should be shifted on level ground with drive pedal B in its up position. When shifting gear, the harvester must be stationary and the working brakes engaged using switch C, fig. 2. The parking brake should be disengaged. When these conditions are met, the gear is changed first into neutral and then into the selected gear. The IQAN display will say: “Gear in neutral! Select gear” for as long as the gear is in neutral. This is to inform the driver in case the selected gear does not get engaged immediately. As soon as the selected gear is engaged, the message on the IQAN display will disappear, and the symbol light of the selected gear will come on next to the gear selection buttons. For safety reasons, with no gear engaged, all the brakes get engaged automatically, i.e. the front working and parking brakes and the rear working brake. At the same time the rear motor hydraulic lines get closed even with only the front-wheel drive on. This provides the rear with hydraulic braking power whenever the gear is not engaged.

The harvester is driven using drive pedal B. The harvester starts moving when the drive pedal is pressed, and accelerates speed when the pedal is pressed more. Fault diagnostics monitors the drive pedal condition constantly. If a pedal defect is detected, the IQAN display will say: “Drive pedal do not work properly. Do you want to drive to service?” A YES answer, i.e. pressing of F1 on the display, will make the harvester move at a low speed and the display will say: “Limb mode” Now driving speed and crane movements are very slow. A NO answer, i.e. pressing of F2, will show “Drive pedal not functioning properly” on the display. However, this does not prevent working. Ensure you are aware of any risk caused by the defect and find out the reason for it.
A separate switch is used to select the driving direction. On models with vertical levers this switch is on the left-side joystick (fig. 8, switch J). On models with mini levers this switch is on the left-side push button board (fig. 7, switch K). On models with EME levers the driving direction selector is on the left-side joystick (fig. 9, switch 15-16). When driving in traffic, the harvester head should be kept close to the harvester and tied up. The harvesting computer should be switched off in case of unintended crane movements.

A forest harvester equipped with hydrostatic transmission must never be parked using only the gear, but the parking brake that is engaged automatically when power is switched off must be used. Hydraulic motors alone cannot keep the harvester stationary for a long period.

Four-wheel drive
The rear wheels have hydraulic hub motors connected to reduction gears. Oil to them comes from the working hydraulics pump through the valves on the front wall of the oil tank. The angle sensor on the middle joint is used in valve control. 4WD is switched on electrically using switch V on the right-side instrument panel, (fig. 2). The coupling shall be done with the harvester stationary. 4WD can only be used in 1st gear. Front-wheel drive is always on with the gear engaged.
For safety reasons the rear hydraulic lines get closed if the engine stops unintentionally, e.g. due to overload. This will happen even with the 4WD switched off. This provides the rear with hydraulic braking power although there is no traction power.
When towing the harvester, four-wheel drive must be off and the engine running to allow the wheel motors to be disengaged. Short-distance towing at a low speed is permitted if the engine and the drive pump cannot be kept running. In such a case the brakes should be released mechanically.

Starting of the engine (fig. 15)
The engine is started with the ignition key. Turn the key to the right to switch on the ignition and turn on the alternator and oil pressure lights. When turning the ignition key farther to the right, to position HS, the engine starts. Position I can also turn on the glow signal light to indicate that the pre/post heater (the glow) is working to facilitate cold starting of the engine. The length of the glow operating time depends on the outdoor temperature.
With the throttle (fig. 1, part H) in its rear position, the engine runs at full revolutions. The harvester is equipped with a highly safe starting system that checks the brake functions and prevents the harvester from moving when the engine is started. It allows starting only with the drive pedal not pressed and the brakes on. During starting crane and cab movements as well as driving are prevented. If the drive pedal is pressed or the brakes are not on with the ignition key in its HS (starting) position, the text “When starting, brakes have to be on and drive pedal not pushed” will be displayed on the IQAN. When the conditions are met, the engine will start. With the brakes engaged as required, the brake pressure switch must switch itself on. If this is not the case, the IQAN will display "Front brakes are not on or do not work Do you want to drive to service in limb mode?" A YES answer, i.e. pressing of F1 on the display, will make the harvester move at a low speed and the display will say: “Limb mode”. Now driving speed and crane movements are very slow. A NO answer, i.e. pressing of F2, will show “Front brakes do not work” on the display. Now crane and cab movements are prevented, and the harvester cannot be driven until the power has been switched off and the testing procedure restarted.
Differential lock

There are sometimes situations when one of the front wheels does not have sufficient grip in respect to the required traction power. This can be avoided by engaging the differential lock inside the gearbox using switch X (fig. 2). The lock at the front is 100% mechanical. On solid ground the lock prevents turning, so then it shall be switched off. With 4WD engaged, the rear wheels always have a hydraulic (not 100%) lock on.

Stopping of the engine

Before switching off the engine, move the throttle into the idling position. The engine is switched off using the electric stopper by turning the ignition key to position 0. Beware of the movements of the harvester head when you switch off the diesel engine. When the power is switched off, the harvester head controls switch off as well and the head may return to its resting position from certain functions. These kinds of functions include, for example, Head closed and Tilt down, depending on the type of the head. The harvester heads often also contain pressurized batteries, potentially causing there to be enough power left for head movements even after the power has been switched off. When finishing working it is recommended to turn off harvesting computer and PC. In this case there is no danger that even accidental use of harvesting head would cause unwanted movements in restarting.

Electric master switch

There is a master switch to control the electrical instruments of the harvester. The electric current to the whole harvester can be switched off using switch Z, fig 2. The right-hand side additional fuel tank has a similar switch (fig. 16). Make it a habit to switch off the main power when leaving the harvester.

Emergency stop

When the emergency stop switch (fig. 1, switch K) is depressed all the way, the diesel engine gets switched off, but there is still current in the electrical system. This engages all the brakes, i.e. the rear brake and the working and parking brakes at the front. Remember that when the engine is switched off, the harvester cannot be steered, and the braking power of the front working brake decreases little by little. Parking brakes will of course stay on until the harvester is re-started.

Cab fresh-air fan provides good ventilation.

The 3-speed fan is started using switch A (fig. 17). To change the airflow direction, turn the nozzles on the panels. The fan air is sucked in from the rear bottom corner of the cab through filters. The outer-most filter is of a coarse mesh type, and the inner one is the actual fresh air filter. To keep up the fan capacity and secure the purity of the air, the filters shall be cleaned or replaced often enough to prevent impurities and fungi from clogging them. In dusty conditions it is necessary to clean the coarse mesh filter several times a day.
Heater provides additional heat from the engine

The air in the cab is heated by a heating element in which the engine coolant circulates. Push lever B forward to increase the amount of coolant circulating in the element. This will increase the temperature in the cab.

Air conditioner (fig. 18)

Air conditioner cools the air in the cab. The cab is equipped with an air conditioning system.

Turn switch C (fig. 18) to the right to switch on and regulate the air conditioner.

Note! A difference of over 8°C between indoor and outdoor temperature is harmful to your health. Keep the cab door closed when the air-conditioning is on. Keep the heater regulator lever in its cold position, i.e. the water circulation off.

The alarm light on the ceiling flashes and there is a sound on the instrument panel if the engine oil or hydraulic oil temperature increases too much. Hydraulic oil temperature is monitored in the oil tank and in the closed loop drive hydraulic motor housing. The alarm light also flashes if the oil pressure decreases or the hydraulic oil filter becomes clogged. The flashing light can be reset, but a small signal light will stay on. The light will also flash when power is switched on to check the signal light function. When the alarm light starts flashing, find out the reason for it immediately and carry out any necessary repairs.

Towing (fig. 19)

Towing is allowed from towing points only. The harvester may be towed from designated points only. When towing backward, the towline is put around the pin as shown in fig. 19. When towing forward, there are holes as shown in fig. 19 near the reduction gear. With the harvester on tow, the operator must be in the cab and the engine running to enable steering. Four-wheel drive must be off.

Unless the engine can be started, the harvester must be towed with great care, as steering is not working. In this case, the brakes should also be released mechanically. When towing on the road, statutory traffic regulations must be followed.
Engine, source of power
The engine is a water-cooled, four-stroke, Common Rail diesel. For a more detailed description of the engine, see the engine manual. Power is transmitted from the rear of the engine to the working hydraulics and traction transmission pumps. The front of the engine houses belt drives for the fan and the alternator generators and the AC compressor.

Suction air filter (fig. 20)
The engine suction air is cleaned by prefilter and two-part paper filter B. If the filter is clogged, signal light G (fig. 4) will come on on the front instrument panel. Clean or replace the filter. See cleaning instructions under service and maintenance. The prefilter is inside the filter cartridge and it is continually drained by means of an exhaust fume ejector.

Fill the tank with fuel free from impurities (fig. 21)
The volume of the fuel tank is 330 litres. Use high-quality diesel oil as fuel. Check the fuel requirements in the engine manual. The fuel must be free from any impurities and water. Before refuelling, remove all impurities from around filler A. Never drain a spare tank into the fuel tank, as impurities and water tend to settle on the bottom. If fuel is added from a spare tank, a funnel with a sieve must be used.

There are air bleeds on the outer rim of the filler through which air gets into the tank. Make sure these bleeds stay unblocked. Never use a filler without air bleeds.
DAILY CHECKS OF THE ENGINE

Lubrication system (fig. 22)

It is of utmost importance to use correct lubricating oil, in accordance with the load placed on the engine. See Lubrication Table under Maintenance. Check the oil level daily before starting; it shall be between the minimum and maximum marks on dipstick A, preferably near the maximum (fig. 22). Oil is refilled through filler B. A warning light on the instrument panel indicates low oil pressure. Should the oil pressure warning light come on with the engine running, stop the engine immediately and find the cause for the trouble.

Cooling system

The engine cooling system is filled with coolant that has 40-50 % ethylene glycol in it. Do not use plain water as coolant as it damages the engine. Before refill, the engine must be cooled off. When refilling, remember the coolant expands considerably when it gets warm, so do not fill up the system. The coolant level is correct when the cells are clearly covered by the coolant, and the coolant level can be seen at the bottom of the level indicator hose on the expansion tank. Check the coolant level daily before starting.

The coolant temperature can be seen in the gauge on the instrument panel. It shall be between 75-95°C. A warning light on the instrument panel indicates engine overheating when the temperature reaches 95°C. If the temperature starts to rise, check that the outside of the radiator is not clogged. The best way to clear blockage is to direct compressed air from the side of the fan through the radiator, or use a brush for cleaning. Always be careful not to damage the lamellas. Behind the cooler course mesh filter there is a small-holed screen. To clean it, first turn the rear cog to its down position and then lift up the screen.

Fire extinguishers

The harvester is supplied with two portable 6-kg fire extinguishers. They are located above the rear wheel inside a side guard that opens backwards. The extinguishers shall be checked every six months by an authorised service outlet. The harvester may also be equipped with a semi-automatic fire extinguishing system, which shall be operated in compliance with the Manufacturer’s instructions.
Opening of the guards

The movable guards of the forest harvester are equipped with quick-release locks. The guards can be locked placing an ordinary padlock in the hole for the quick-release lock.
Hydraulics

The harvester has both open and closed hydraulic circuits. They have a joint oil tank on the rear frame of the harvester.

The closed hydraulic circuit in front-wheel-drive (fig. 24) has a suction / return filter, a drive pump and a hydraulic motor at the front.

The drive pump produces a pressure corresponding to the tractive resistance and an oil flow corresponding to the drive pedal position.

The open hydraulic circuit in rear-wheel drive comprises the same pump as in working hydraulics, a 2-segment mobile directional valve and the rear wheel hub motors. Additionally there are separate pilot valves for the disengagement of 4WD and a pressurization block to prevent cavitation. When using four-wheel drive, the valves direct the right amount of oil to each rear wheel. When using front-wheel drive, the rear motors are disengaged.

Working hydraulics in the base harvester (fig. 25) uses the above-mentioned open-circuit pump, a load-sensing directional valve and a return filter. Crane movements are controlled by a load-sensing valve. The work pump produces the right pressure and output in relation to load weight and speed. This enables fast and precise movements in every circumstance. Magnetic valves in the cavitation prevention block and adjustable pressure limits are used in the pressurization of the harvester head.

It is forbidden to change the pressure settings in working and traction hydraulics without permission from the Manufacturer, as it may damage the harvester and cause risk of injury to the mechanic and the harvester operator.
Directional valves control the functions of the frame lock (A), brakes (F, C), differential lock (B), 4WD disengagement (D), crane turn brake (B) and gear shift (E) (fig. 25.2). The frame lock is equipped with a dual-function cylinder. The cylinders are cross-connected and linked to the low-pressure cooling oil line. When the frame lock is engaged, the directional valve closes the flow ways and the cylinders become locked in their place.

The gear shifting mechanism takes the working pressure from the working hydraulics pump through a pressure reducer valve. The rest of the operating devices mentioned above take their driving force from the drive pump feed pressure.

There is a separate hydraulic pump to cool down the hydraulic oil besides the closed circuit feed pump output used for cooling. These oils are directed through a thermostat valve to an oil cooler. From there the cooled oil goes to the suction / return filter from where some oil is sucked by the closed circuit feed pump and some return to the tank. When oil temperature is below 38oC, the oil does not circulate through the cooler.

When dealing with hydraulics, uncompromising cleanliness is of utmost importance. The oils used shall comply with the Manufacturer’s instructions. Refill shall always be done through the return filter.
Electrical instruments

The control of the base harvester is based on the IQAN machine control system. It also conveys what diesel speed is required and provides diesel sensor data. In the control of the harvester head a specially developed harvesting computer is used with different on-board computer applications.

The engine is equipped with an alternator generator.

NOTE! With the engine running, the master switch must not be turned on, and the ignition key must not be turned in the 0 position if there is a separate stop lever in the harvester.

Fuses

Fuse Box 1
- 1F1 Turning signal left 7.5 A
- 1F2 Turning signal right 7.5 A
- 1F3 Parking lights 7.5 A
- 1F4 Gauge lights 7.5 A
- 1F5 Headlight left, dipped 7.5 A
- 1F6 Headlight right, dipped 7.5 A
- 1F7 Headlight left, full 7.5 A
- 1F8 Headlight right, full 7.5 A

Fuse Box 2
- 2F1 Radio, indoor light, EHS 15 A
- 2F2 Working light relays 7.5 A
- 2F3 24 plug outlet, emergency flasher 10 A
- 2F4 Rotating flasher 10 A
- 2F5 Turning signal 7.5 A
- 2F6 Windscreen wiper 15 A
- 2F7 Brakes, frame lock, CTA control 15 A
- 2F8 Safematic greasing system 15 A

Fuse Box 3
- 3F1 Fan, AC compressor 25 A
- 3F2 Sound signal 10 A
- 3F3 Seat heating, compressor 10 A
- 3F4 Main relays, measuring device, iqan control 7.5 A
- 3F5 Gauges, warning lights 7.5 A
- 3F6 PC 10 A
- 3F7 Fire extinguishing 10 A
- 3F8

Fuse Box 4
- 4F1 Working lights, crane 25 A
- 4F2 Working lights, front, down, right and left (add. light) 25 A
- 4F3 Working lights, cabin roof 25 A
- 4F4 Working lights, cabin roof 25 A
- 4F5 Working lights, cabin roof 25 A

Fuse Box 5
- 4F6 Working lights, cabin roof 25 A
- 4F7 Working lights, door, right and left 25 A
- 4F8 Working lights, (additional lights) 25 A

Fuse Box 6
- 5F1 Main current, K3 + 15 25 A
- 5F2 Working lights, front, down right and left 25 A
- 5F3 Main current, K7 + 15 15 A
- 5F4 Main current, ignition lock + 30 25 A
- 5F5 Air-conditioning 10 A
- 5F6 Harvesting computer 10 A
- 5F7 Cab, X39:1 10 A
- 5F8 IQAN XP-A0 20 A

Fuse Box 7
- 6F1 main fuse, IQAN control, fuel pumps and valve 25 A
- 6F2 IQAN XY2-A1 20 A
- 6F3 IQAN XP-A1, additional amplifier module 20 A
- 6F4 Vacuum pump 7.5 A
- 6F5 Cab, X39:2 15 A
- 6F7 Hydraulic filler pump solenoid 15 A
- 6F8 Cab, X39:3 20 A

Fuse Box 8
- 7F1 Plug, cab front 10 A
- 7F2 PC pre-heating 5 A
- 7F3 Fuse 20 A
- 7F4 Fuse 20 A
- 7F5 Fuse 20 A
- 7F6 Fuse 20 A
- 7F7 Fuse 20 A
- 7F8 Harvesting computer + 30 Dasa 10 A
Fuse Box 8
8F1 Fire extinguishing 10 A
8F2 Fuse IQAN MD3 3 A
8F3 Engine comp. service light 5 A
8F3 Engine heater add. water pump 10 A
8F5 Fuel filler pump plug 20 A
8F6 Engine heater fan 15 A
8F7 Engine heater 15 A
8F8 Engine heater timer 5 A

Fuse Box 12
12F1 EHS gearbox control unit 2A
12F2 EHS gearbox control unit 15A

Fuse Box 9
9F2 hydraulic motor sensor rpm 1 A
9F3 CTA ignition key +15 5A
9F4 fuel transfer pump 10A
9F6
9F8 fuel sensor 2A

Fuse Box 13
13F1 Glow 150A

Fuse Box 10
10F1 IQAN XA2:A0 20A
10F2 IQAN LX0-LX1 levers 3A
10F3 IQAN MD3 display +15 3A

Fuse Box 14
14F1 PC 15A
14F2 Printer 7.5A
14F3 phone/Sunit modem 7.5 A

Do not fit an oversized fuse as it may damage the respective electrical instrument. If a fuse blows on the same location repeatedly, find out the reason for it.
Battery

The gas generated by the battery is very explosive. Avoid open fire and sparks in the vicinity of the battery. When servicing an electrical instrument, disconnect the negative cable of the battery.

Checking of the charge state of the battery

During harvesting the engine recharging equipment keeps the battery charged. At other times, check the state of the battery at regular intervals and recharge if necessary. An acid gauge may be used for checking. In the table below you can see the charge state of the battery compared with the acid specific weight.

<table>
<thead>
<tr>
<th>Specific weight reading</th>
<th>Charge state</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 280</td>
<td>Fully charged</td>
</tr>
<tr>
<td>1 240</td>
<td>75 % “</td>
</tr>
<tr>
<td>1 200</td>
<td>50 % “</td>
</tr>
<tr>
<td>1 160</td>
<td>25 % “</td>
</tr>
<tr>
<td>1 120</td>
<td>No charge</td>
</tr>
</tbody>
</table>

Do not leave a flat battery unused for a long time. A low-charged battery freezes easily and exposure to frost will cause extensive damage. If a recharging device is available, recharging can also be done at home.

Before starting to recharge:

- Disconnect the battery cables
- Unplug the cells
- Make sure the fluid level is high enough

Use 5-10 % of the Ah of the battery for charging current. For example: A 100 Ah battery may be recharged using 5-10 ampere current. Recommended recharging interval is 6-10 weeks.

Cleaning of battery and other maintenance

Clean the battery cover regularly.
Remove any oxidisation off the battery terminals and cable lugs.
Make sure the cable lugs are properly tightened.
Coat the outer faces of the terminals and lugs with Vaseline. Check that the battery is properly fastened and the terminals protected. Make sure the rubber mat is on the battery.
Check the fluid level a few times a year and before storage. Add distilled water, if necessary, up to the upper fluid limit.

NOTE! Wrong connection of either the battery or the generator will damage the generator. Before electrical welding, disconnect the battery and generator cables.
Check the condition of the cable insulation and the protective cables on a regular bases and repair or replace any necessary parts.
Using of auxiliary battery

If additional power is needed for starting, proceed as follows:

As a source of additional power use 24 V input for example: another 24V vehicle, start-booster or two 12V batteries in series. Make sure the harvester batteries has not frozen; a flat battery freezes in -10°C.

Follow carefully the connecting sequence given below:
1. Connect the auxiliary starting cable to the positive pole of the additional power source. Connect other end of the cable to the 30-pole of the main switch (that is +24V cable from harvester batteries.
2. Connect one end of another auxiliary starting cable to the frame of the harvester (same point where batteries grounding is located). Connect the last end to the negative pole of the additional power source.

Do not lean over the batteries while making the connections.
Start the engine.
Disconnect the cables in exactly the opposite order.

Installation of additional electrical instruments

When installing additional electrical instruments onto the harvester, make sure the size of the charge generators is 2x100 A. The total consumption of a base forest harvester in the dark is 120-150 A consisting mainly of the following:

<table>
<thead>
<tr>
<th>Instrument</th>
<th>Amperage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Headlights</td>
<td>11.7 A</td>
</tr>
<tr>
<td>Working lights</td>
<td>82.5 A</td>
</tr>
<tr>
<td>Gauge lights</td>
<td>2.0 A</td>
</tr>
<tr>
<td>Three-speed cab fan</td>
<td>13.5 A</td>
</tr>
<tr>
<td>Harvesting computer</td>
<td>3-15 A</td>
</tr>
<tr>
<td>Hydraulics</td>
<td>2-16 A</td>
</tr>
<tr>
<td>Joystick functions</td>
<td>5 A</td>
</tr>
</tbody>
</table>

Electrically controlled diesel engine

The control center is located on the rear frame on the right above the fuel tank. The casing houses the IQAN-XT2 control unit. If the engine becomes aware of any malfunction, engine diagnosis signal light Q (fig. 2) will come on.
Iqan control system

![Diagram of Iqan control system]

The Iqan monitor consists of the following elements:
- monitor display A
- bottom F1-F4 buttons B
- OK button C and the arrow buttons above and below it D
- Menu button E at the bottom right (three horizontal lines)
- Back button F (arrow to the left)

The display brightness can be adjusted by pressing the Menu button and selecting the backlight setting.

SAFETY SYMBOLS

Various notifications and warnings can be displayed in the Iqan monitor. They appear in separate windows partly covering the basic display. The F1-F4 buttons of the display are used to select the most suitable option at the bottom of the warning window. For example, the sensor error in the picture here can be reset by selecting OK, or pressing the F1 button.
There are seven types of notifications and warnings. The type Message is the least serious and Critical is the most serious. The important notifications are always shown before the less critical ones. The following is a list of all notifications and warnings in the order of importance.

- message
- information
- confirmation
- warning
- alarm
- error
- critical

The notifications and warnings detected by the Iqan machine control system are always messages, alarms or errors. The notifications and warnings from the diesel engine and base machine are primarily information and warnings.

IQAN DISPLAY MENUS

The Iqan display has a graphical user interface and a menu structure. The menu structure is shown in figure 26.

![Diagram of IQAN display menus]

FROM ANY PAGE:
Press menu-button to go back to main page
Press Back-button to go former page

Press F1-F4

ADJUSTMENTS PAGE
- Choose group to adjust
- Choose function parameter or channel
- Change parameters, or select defaults

MEASURING PAGE
- Choose group to measure
- Choose raw- or scaled value
- Look at measures

SETTINGS PAGE
- Choose display, time, or language
- Change settings

INFORMATION PAGE
- Choose module, or log
- Look at information
MAIN MENU
The menus contain the base machine setup, input and output measurements, settings and module status and related logs. The menus can be accessed by pressing the Menu button (three horizontal lines). Pressing the Menu button again takes you back to the basic display.

SYSTEM INFORMATION
When you press the F4 button in the main menu, you can view system information such as the name of the software loaded in the monitor, author of the last revision and the date of the revision. By pressing F1 or F3 you can view information on modules or log. The Back button takes you back to the previous page. Pressing F1 on the subpages takes you directly back to the main menu.

SETTINGS
You can change the display settings by clicking the F3 button in the main menu. Then by pressing F1, F2 or F3 you can view information on the display, date and time as well as language. The Back button takes you back to the previous page. Pressing F1 on the subpages takes you directly back to the main menu.
MEASURING

You can measure the sensors and valves connected to the Iqan control system by pressing F2 in the main menu. First, a page with different measurement groups such as crane, joysticks, steering/rotator etc. opens. The desired measurement group is selected with the up/down arrows and by pressing OK. Use the arrow buttons also to select a measurement route such as a sensor or valve. You can toggle between the raw value provided by the route and the scaled value using the F2 button. The Back button takes you back to the previous page. Pressing F1 on the subpages takes you directly back to the main menu.

ADJUSTMENTS

You can access several outputs and parameters in order to adjust them by pressing the F1 button in the main menu. First a page opens on screen with a number of adjustable groups such as crane adjustments, driver selection, function parameters etc. The desired adjustment group is selected with the up/down arrow buttons and by pressing OK. A lock symbol may be displayed behind the adjustment group name. This means that a password is needed for adjustments.

After selecting the adjustment group, select the desired measurement route such as a sensor or valve using the arrow buttons. Several instruments have two different directions of movement. The correct direction +/- is selected with the F3 or F4 button. The current adjustment values are displayed on the right side of the display. After you have selected the desired route and direction, press OK.
Adjusting a parameter

You are now on the page where the actual adjustment is done. You can move from one parameter to be adjusted to the next by pressing the OK button repeatedly. When you are at the parameter you want to adjust, press the up or down arrow button. The parameter value on screen changes with each time a button is depressed. You may reset to the default values at any time after the adjustment by pressing the Reset button, or F2. The Back button takes you back to the previous page. Pressing F1 on the subpages takes you directly back to the main menu.

INTERNAL DIAGNOSTICS OF THE IQAN DISPLAY

The Iqan display has its own diagnostics page showing information on the status of the display. You can access the diagnostics page by pressing the Back and the Menu buttons simultaneously while switching on the power. To exit the testing mode, switch off the power and switch it on again normally.

INSTRUMENT PANEL DISPLAY

The left side of the instrument panel display shows the diesel engine revolutions both as a tachometer and as numerical values.
SUBMENUS

The images and text at the bottom of the main display indicate the functions of the F1-F4 buttons in each display. The purpose of these submenu displays is to provide you with some of the most important facts collected on templates.

Adjustments

When pressing the F2 button in the main menu, a window opens in which you can select the crane adjustments.

When pressing the F4 button in the main menu, a window opens in which you can select the parameters.
Diesel temperatures, oil pressure and operating hours

When you press the F1 button in the main display, a page opens displaying the diesel engine coolant temperature, fuel temperature, intake air temperature and oil pressure.

When you press F1, you can view the total hours, operating hours and working hours.

The total hours indicate the time that the machine power has been on. The operating hours indicate the time the diesel engine has been on. The working hours indicate the time the diesel engine’s speed has exceeded 1,200 rpm. You can return to the main display from the subpages by pressing the F4 button.

Drive pressures

Pressing the F3 button in the main display opens a window showing the status of the drive pressures. You can return to the previous page from the measurement pages by pressing the Back button.
Parameters in the IQAN control system

Numerous parameters, power settings and delays affecting the harvester functions can be set on the IQAN-MD3 display module. Instructions for the display are given in a separate IQAN-MD3 leaflet. Below you will find a list with explanations of the parameters that can be set on the display.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>JS TRIGGER + [%]</td>
<td>If the joystick is turned to the right more than the % value, the harvester head rotator will start rotating to the right.</td>
</tr>
<tr>
<td>JS TRIGGER – [%]</td>
<td>If the joystick is turned to the left more than the % value, the harvester head rotator will start rotating to the left.</td>
</tr>
<tr>
<td>TILT UP SETTING [1/0]</td>
<td>With the value at 50 or more, the harvester head automatic tilt up is in use after the head open function. With the automatic tilt up it is also required that the head open button or lever is pressed for more than 0.7 seconds.</td>
</tr>
<tr>
<td>TILT DOWN SETTING [1/0]</td>
<td>With the value at 50 or more, the harvester head automatic tilt down is in use after the head closed function. With the automatic tilt down it is also required that the head closed button or lever is pressed for more than 0.7 seconds. This function can only be activated with mini levers.</td>
</tr>
<tr>
<td>LIFT POWER LIMIT</td>
<td>The movement speed of crane lift slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect.</td>
</tr>
<tr>
<td>STEERING POWER</td>
<td>The movement speed of frame steering slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect.</td>
</tr>
<tr>
<td>TILT POWER LIMIT</td>
<td>The movement speed of crane tilt table slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect.</td>
</tr>
<tr>
<td>JIB POWER LIMIT</td>
<td>The movement speed of crane jib slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect.</td>
</tr>
<tr>
<td>SWING POWER LIMIT</td>
<td>The movement speed of crane swing slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect.</td>
</tr>
<tr>
<td>EXTENSION POWER LIMIT</td>
<td>The movement speed of crane extension slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect.</td>
</tr>
<tr>
<td>DRIVE 1050 LIMIT [%]</td>
<td>Driving speed slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect. This value is effective when diesel revolutions are low.</td>
</tr>
</tbody>
</table>
DRIVE 2250 LIMIT [%] Driving speed slows down to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the effect. This value is effective when diesel revolutions are high. The change between this and the previous value is linear.

WORK PUMP MIN ANGLE The working pump decreases output (=angle) to the value set at this parameter when diesel revolutions decrease in a load situation. The smaller the value, the smaller the pump angle in a load situation. In other words, small value = big effect

REAR PUSH% Fine adjustment of the oil going to the rear traction motors. With the value set at 100%, the rear tries to rotate at the same revolutions as the front. A bigger value makes the rear propel the harvester. At a smaller value the rear “drags” slightly behind.

INNER TYRE STEER LIMIT [%] When using articulated steering, the rotation speed of the inner wheel is decreased to the value set at this parameter. This fine adjustment improves driving comfort at the moment.

OUTER TYRE STEER LIMIT [%] When using articulated steering, the rotation speed of the outer wheel is decreased to the value set at this parameter. This fine adjustment improves driving comfort right at the moment.

END CUSH. [%] Articulated steering slows down to the value set at this parameter when the joint is fully turned.

END CUSH ANGLE [°] Articulated steering starts slowing down as the joint turns beyond this degree.

CABIN SLOW [%] The value that affects the movement speed of the cab automatic return to mid position. The bigger the value, the higher the movement speed near mid position.

CABIN IN MIDDLE [°] Cab tilt sensor deviation from mid position. The smaller the value, the closer to mid position the cab tries to get automatically. Too low a value causes a continuous search for cab mid position.

JIB FILTER [%] Dampening of vibration in crane jib. Prevents hand vibration from resulting in crane vibration. The bigger the value, the stronger the hand vibration that is dampened.

SWING FILTER [%] Dampening of vibration in crane swing. Prevents hand vibration from resulting in crane vibration. The bigger the value, the stronger the hand vibration that is dampened.

LIFT FILTER [%] Dampening of vibration in crane lift. Prevents hand vibration from resulting in crane vibration. The bigger the value, the stronger the hand vibration that is dampened.

STEERING FILTER [%] Dampening of vibration in frame steering. Prevents hand vibration from resulting in crane vibration. The bigger the value, the stronger the hand vibration that is dampened.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TILT TABLE FILTER [%]</td>
<td>Dampening of vibration in crane tilt table. Prevents hand vibration from resulting in crane vibration. The bigger the value, the stronger the hand vibration that is dampened.</td>
</tr>
<tr>
<td>EXTENSION FILTER [%]</td>
<td>Dampening of vibration in crane extension. Prevents hand vibration from resulting in crane vibration. The bigger the value, the stronger the hand vibration that is dampened.</td>
</tr>
<tr>
<td>DRIVING FILTER [%]</td>
<td>Dampening of vibration in driving. Prevents foot vibration on the drive pedal from changing driving speed. The bigger the value, the stronger the vibration that is dampened.</td>
</tr>
<tr>
<td>FB-TILT ENDING TIME</td>
<td>The cabin can’t always be straightened horizontally on a steep hill. This parameter sets the time after which automatism stops and accepts that cabin did not straighten completely.</td>
</tr>
<tr>
<td>FB-CABIN VIBRATION TIME</td>
<td>Short-term swings do not put automation on again. This parameter sets the length of time in question.</td>
</tr>
<tr>
<td>LEVER SELECTION [1/0]</td>
<td>The value for the mini levers and EME levers should be 1</td>
</tr>
</tbody>
</table>
Service and maintenance

Safety

Installations and adjustments may be carried out only by a person with the required skills and qualifications and the necessary knowledge of the machine in question.

Installations and adjustments as well as repairs must be carried out when the engine is stopped and the key removed from the ignition. Moving parts must be in balance and stopped, and when necessary, locked.

For example, the crane and harvester head may move or slide on their own over time.

Make sure that there is no stored pressure in the fluid systems before you open mechanical or hydraulic joints (pressurized oil tank, harvester head pressure battery, AC equipment, radiator etc.)

Make sure there is no danger of injuries if you need to start the engine while performing maintenance and also after maintenance work.

Ensure that all periodic maintenance work and cleaning are performed on schedule in accordance with the instructions. This reduces the risk of danger caused by malfunctions.

Proper maintenance and service guarantee a long working life and the validity of the warranty.

General instructions:

· Make sure you are sufficiently qualified before you perform maintenance tasks. If you are not sure, have the work performed by a qualified individual.
· Familiarize yourself with the structure of the harvester and the maintenance instructions before you start the maintenance work.
· Wear protective clothing suitable for the work
· Use appropriate tools and other equipment.
· Handle the machine to be maintained and the substances used as instructed so that there is no danger to yourself, other people or the environment.
Service measures daily or every 8 hours

1. Checking of the engine oil level
Stop the engine on level ground and wait for a few minutes. The oil level shall be between the marks on the dipstick. Fig. 26.

Fig. 26
A Oil measuring dipstick
B Oil filler
C Coolant check / refill

2. Checking of the coolant level
Note! Open the over-pressurised radiator cap with great care when the engine is hot. Never use plain water as coolant! Do not pour cold coolant into a hot engine. The coolant level shall be approx. half way up the expansion tank. Coolant is added through the expansion tank. Make sure there is anti-freeze in the radiator in the cold season.

3. Checking of the hydraulic oil level
Check the hydraulic oil level in the measuring glass on the tank with the lift cylinders in their inner position.

Note! The oil level shall always be visible in the measuring glass.

Oil shall always be refilled using filler pump hose A. Oil can also be added through filler B capped with a hexagonal screw in the return filter. Fig. 27. This will leave all the impurities in the filter.

4. Daily lubrication
Lubricate the daily lubrication points in compliance with the lubrication table. See Lubrication Table.
5. Cleaning of radiator grilles
Depending on the operating environment, the radiator grilles shall be cleaned often enough to prevent the engine from overheating. Clean the rear cog screen and the removable grille using compressed air or a brush (fig. 28). When necessary, clean the oil and engine condensers.
Note! The rear cog and the grilles must not be covered with the engine running.

6. Checking of tyre air pressure
Check the tyre air pressure and external condition visually. Check the air pressure if necessary. The correct air pressure for the 600/65-34 tyres is 2.5 bar, the 700/55-34 tyres a minimum of 2.8 bar.

7. Checking for leakage
Check for any liquid, fluid and oil leakage.

8. Checking of connections
Check the screw and pipe connections visually.

Note! During the first operating month the tightness of the screw connections in the crane, shafts and joint shall be checked daily.

It is important to tighten the screw connections to the correct torque. The required wrench sizes and torques:

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Wrench size (mm)</th>
<th>Tightening torque for screws of 8.8 strength class (Nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 6</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>M 8</td>
<td>13</td>
<td>25</td>
</tr>
<tr>
<td>M 10</td>
<td>17</td>
<td>47</td>
</tr>
<tr>
<td>M 12</td>
<td>19</td>
<td>78</td>
</tr>
<tr>
<td>M 14</td>
<td>22</td>
<td>120</td>
</tr>
<tr>
<td>M 16</td>
<td>24</td>
<td>180</td>
</tr>
<tr>
<td>M 20</td>
<td>30</td>
<td>335</td>
</tr>
</tbody>
</table>

Note! Tightening torques for wheel fixing screws
Front wheels: 700 Nm
Rear wheels: 700 Nm
Service measures weekly or every 50 hours

1. All daily service measures
The service measures to be taken every 50 hours include all the measures listed in service measures daily or every 8 hours.

2. Lubrication in compliance with the lubrication table
Lubricate in compliance with the lubrication table paying attention to any special instructions. See the lubrication table.

Service measures every 100 hours

1. Cleaning of engine air filter
The engine suction air is cleaned by a pre-filter and a dry paper filter of a dual-element type. Faultless functioning of the filter is of utmost importance to the long lifespan of the engine.

The filter housing is located in the engine compartment. The instrument panel has a signal light indicating a clogged air filter. The indicator measures under pressure in the suction channel. The signal light is red, when the filter needs cleaning.

The filter housing cover is fastened with locking brackets and the filter cartridges are under the cover (fig. 29). The outer filter cartridge shall be replaced when blockage is indicated or at least once a year. The outer cartridge can also be cleaned, but no more than five times. Open the locks on the rear filter cover and twist the cartridge out of the housing. Be careful not to damage the paper. Do not remove the inner cartridge unless it needs replacing. The filter protects the suction channel against impurities during service.

Blow dry compressed air (not over 5 bar) inside the filter. Great care shall be taken not to damage the filter cartridge or allow dust inside.

After cleaning, check the condition of the filter. Direct a strong light from the inside. In case the outer filter cartridge is broken, it shall be replaced. The inner filter shall also be replaced as it has become dirty. Otherwise the inner cartridge is replaced after five filter services or every other year.

Clean the inside of the filter housing carefully before removing the inner cartridge. When refitting the filters, make sure that the gaskets are intact, the mating surfaces clean and that the filter fits well.
When servicing the filter, check the condition and attachment of the air hoses and the cleanliness of the hose in the exhaust fume ejector.

Note! Never run the engine without filters.

2. Checking of battery fluid level
Clean the battery housing carefully. Check that the battery fluid level is 5-10 mm above the cells. Make sure the cable lugs are properly tightened. Remove any oxidisation with hot water. Coat the cable lugs with copper or aluminium paste.

3. Cleaning of breather on the hydraulic tank
Clean the filter and the surrounding area carefully (fig. 31).

4. Checking of the condition of traction transmission
Check the attachment of final drives, drive shafts and gearbox. Ensure there are no cracks. Check the attachment of the hydraulic pump and motors in traction transmission. Check for leaks in hose connections.

5. Cleaning of cab air filter
Remove the cab fresh air filter with its housing and clean it carefully with compressed air. Replace a soiled or broken filter. The paper filter shall be replaced at least once a year. Check also the condition of the air intake suction channel.

6. Checking of gearbox oil level
Check the oil level in filler C. Oil level shall be level with the rim. If necessary, add oil in filler B until oil runs out of the control opening. Check and clean breather D on the cover. Add the type of oil specified in the oil table (fig. 32).

7. Checking of light operations
Make sure the headlights, working lights, turning signals and signal lights function properly. When replacing bulbs, comply with the Manufacturer’s recommendations.

8. Draining of water out of water separator
The fuel pre-filter with water separator is located on the left side of the engine. Drain any accumulated water into a dish weekly. Replace the filters in compliance with the service table or more often if you suspect a clogged filter. Fault code “Fuel pressure low” indicates a clogged pre-filter or air leakage in the pipes. When changing the filter, remember to take the metal water separator plug from the old filter. Used filters are problem waste that must be dealt with accordingly. For further instructions, refer to the engine manual.

9. Checking of oil level in final drives
Check the oil level in filler B. Oil level shall be level with the rim. If necessary, add oil in filler C until oil runs out of the control opening. Refit the breather and control plug and wipe off excessive oil (fig. 33).

10. Checking of brake functions
Both working and parking brakes shall be checked regularly. The fluid level in the front brakes shall be above the minimum level (fig. 34). Ensure there is no leaking. If something needs to be done with parking brakes, it is good to know that parking brakes are released when the lever beneath the brake drum is in its mid position. Deflection in either direction engages the brakes.

11. Checking of belt tension
Check the tension of belts in the water pump, generator and optional air conditioner. The tension is correct when there is a deflection of 15-20 mm when pressing with your thumb. Replace worn and damaged belts (fig. 35).

12. Cleaning of polycarbonate windows
Remove any particles that may damage the window surface. Avoid using any sharp objects. Use mild and environmentally friendly detergents and plenty of water for washing. Substances suitable for removing stains include pure isopropyl alcohol, white spirit, heptane, white gas, butyl ethylene glycol, methanol, hexane and butanol. Use plenty of water for rinsing after the removal of stains.

NOTE! Do not use other solvent substances such as gasoline for cleaning windows.
Service measures every 500 hours

1. **All daily and weekly service measures.**
The service measures to be taken every 500 hours include all the measures listed under service measures daily or every 8 hours as well as the measures listed under service measures weekly or every 50 hours and every 100 hours.

2. **Changing of engine oil and filter**
Run the engine until it warms up. Open the drain plug in the under pan and the drain screw on the banjo connection in the engine sump. Drain the oil into a pan. When all the oil has been drained, close the drain plug and the screw (fig. 36).
The oil filter is replaced every time the oil is changed. Clean around the oil filter. Remove the old filter using a filter key. Coat the gasket on the new filter lightly with new oil (fig. 37) and make sure the gasket surfaces are clean. Attach the filter manually. Wipe off any excessive oil. Pour new oil in the filler up to the top mark on the dipstick. Pay attention to the amount of oil poured into the filter.
Acceptable oil brands and amounts are given in the lubrication table and the engine manual. For further instructions, see the engine manual.

Note! Only use types of oil recommended by the Manufacturer!
Check the engine breather pipe every time the oil is changed. The pipe shall be clean inside and it must not be dented.

3. **Changing hydraulic oil filter after first 500 hours**
See instructions for changing a filter in section ‘Service measures every 1000 hours’.

4. **Using of additional heater outside the heating season**
The heater shall be used about once a month outside the heating season, too, to prevent the fan motor and water pump from becoming stuck.

5. **Checking bolts after first 500 hours**
Check tightness of the bolts in crane, brakes, final drives, wheels and joints after first 500 hours.

6. **Adjusting the diesel engine valves**
Adjust the diesel engine valves after the first 500 operating hours and then every 1000 operating hours.
For detailed information, see the engine manual.
Service measures every 1000 hours

1. All service measures to be performed daily, weekly and every 100 and 500 hours
 The service to be performed every 1000 hours includes all the service measures listed under service measures daily or every 8 hours, service measures weekly or every 50 hours and service measures every 500 hours.

2. Changing of fuel filter and pre-filter (water trap)
 See instructions in the engine manual, (fig. 38).

3. Draining of condensed water out of the fuel tank
 Run a little fuel from the filler at the front of the fuel tank into a pan. Remove water at least once in a year.

4. Changing of hydraulic oil filter
 Change the filters in working and traction hydraulics (fig. 39).
 The hydraulic oil does not need to be drained when the filters are changed.
 See further instructions under service measures every 1500 hours

5. Changing of gearbox oil
 The oil is drained by unplugging oil drain A (fig. 40). New oil is poured into filler B. Check in control opening C that the oil level is level with the rim. Check and clean breather D on the cover. Oil change every 1000 hours or once a year.
 Used oil is problem waste, which shall be disposed of in an appropriate manner.
 Use an oil type in accordance with the oil table (see chapter LUBRICATION).

6. Changing of crane turning motor oil
 See instructions in the crane manual

7. Changing of crane turning motor brake oil
 See instructions in the crane manual

8. Checkin condition of hydraulic hoses
 Check The condition of hoses. Replace worn out and leaking hoses to New. Replace all hoses with new ones at least once in 15 years.

9. Checking air hoses of cooler and engine

- 59 -
Check hoses visually. Replace with new if needed. Engine’s cooling water hoses must be changed at least every five years.

10. Adjust diesel engine valves
See instructions in the engine manual.

Service measures every 1500 hours

1. All service measures to be performed daily, weekly, every 500 and 1000 hours
The service to be performed every 1500 hours includes all the service measures listed under service measures daily or every 8 hours, service measures weekly or every 50 hours and service measures every 500 and 1000 hours.

2. Changing of oil in final drives (fig. 41)
Clean around control opening B, breather C and oil drain A. Open the drain and drain the oil into a pan. Add oil in the breather. The oil level should come up to control opening B. Refit the cleaned breather and control plug.
Used oil is problem waste, which shall be disposed of in an appropriate manner.
Use an oil type in accordance with the oil table.

3. Changing of hydraulic oil and filters
Traction and working hydraulics have a joint oil tank. Oil should be changed at least once a year.
Before changing the oil, run the system until it is warm and adjust all the cylinders in their shortest position.
Oil is drained from the system by unplugging the drain plug at the end of the drain hose. Have a sufficiently large pan handy, as there is approx. 200 litres of oil. Clean around the filters carefully before removing them.

Note! The oil does not need to be drained
when the filters are changed.

When changing the suction filter, turn the filter cover counter clockwise. Check and, if necessary, replace the gasket on the filter cover before refitting.

To change the return filters, unscrew the four fixing screws on the filter cover. The cover is spring loaded, which means the screws shall be unscrewed evenly. Remove the fixing nut at the bottom of the filter element and change the filter cartridge (fig. 43).

Use only genuine filters and oil types in compliance with the oil table to guarantee perfect functioning. Make sure there are no impurities in the oil or the funnel.

After the oil change let the engine idle for approx. 30 minutes, during which time hydraulics must not be used. During this period the oil circulates through the filter several times and any impurities in the oil are filtered off. Monitor the oil level and check for any leakage in the filter.

There is a glass gauge on the side of the oil tank to monitor the oil level. The oil level shall be visible in the gauge window. Add oil, when necessary.

REFILL ALWAYS THROUGH THE RETURN FILTER PLUG USING AN OIL FILLER PUMP!

At the base of the oil filter there is an alarm switch to indicate pressure loss through the filter. In case the alarm light is on in the cab and the oil is in its operating temperature, the filter cartridge is clogged and shall be replaced.

In case of over-heated hydraulic oil

Hydraulic oil temperature should not exceed 70 degrees C. A temperature increase of 10 degrees cuts the oil lifetime in half. When the signal light comes on, hydraulic oil temperature is 90 degrees. In this case you should wait long enough to let the temperature drop.

The engine can be kept running, but unloaded. Find out the reason for the excessive oil temperature. The most common reason is blockage in the radiator and its protective screens.

4. Checking of the functions of hydraulic signal lights

Earth the sensor cables of suction, pressure and return filters. The signal lights on the instrument panel should come on.

5. Checking condition of hydraulic hoses

Check the condition of hoses. Replace worn out and leaking hoses to New. Replace all hoses with new ones at least once in 15 years.

SERVICE MEASURES EVERY 2000 OPERATING HOURS

1. Inspect and clean the diesel engine injectors (EEM3 service tool)

SERVICE MEASURES EVERY 4000 OPERATING HOURS

1. Check compressor clearances / check the cleanliness of the intercooler element

For detailed instructions, see the SisuDiesel manual.
Service measures every 5 000 operating hours
There is a torsional coupling between the engine flywheel and the work pump shaft. Replace the coupler every 5 000 hours to prevent sudden breakage. Remove the pumps together with the pump fixing plate attached to the flywheel casing. The toothed steel hub on the pump shaft needs to be replaced at the same time with the plastic element.

Service measures every 6 months
The fire extinguishers shall be serviced every 6 months or more often if so stipulated in local regulations or terms of the fire insurance.

Service measures every 1 year
If the harvester is equipped with an automatic extinguishing system, it shall be serviced as instructed by the Manufacturer. See servicing of the fire extinguishing system in the operator manual. In some countries terms of insurance requires yearly inspection of the vehicle.

Service measures every 2 years
1. Replacement of the AC drying cartridge
To guarantee faultless functioning of the air conditioning, the drying cartridge needs to be replaced every 2 years.

2. Changing of engine coolant
The coolant shall be changed at least every other year to maintain its anti-corrosion properties. The cooling system is drained by opening the draining taps in the radiator water cell and on the left-hand side of the engine at the rear and by unscrewing the cap in the expansion tank. In order to drain the coolant from the heater cell, too, turn the thermostat to its maximum position. Used coolant is problem waste, which shall be disposed of in an appropriate manner. Therefore the draining taps are equipped with connectors to which a collection hose can be attached to drain the liquid (fig. 44).

\textbf{Note! See further instructions in the engine manual.}

The dual-functioning thermostat must not be removed to reduce the temperature, as this would make most of the coolant circulate through the side circulation pipe, which reduces cooling capacity.

On models equipped with an additional heater, air shall be bled from the heater when more coolant is added. See the heater instructions!
Lubrication

Do not lubricate while the engine is running. Remove the ignition key before starting lubricating. The table below gives recommended lubricants to be used in different temperatures. The table also gives different types of air conditioning liquids, although they do not normally have to be changed.

<table>
<thead>
<tr>
<th>Recommended lubricant</th>
<th>Oil grade API</th>
<th>Viscosity SAE</th>
<th>Filling quantity l</th>
<th>Change interval</th>
</tr>
</thead>
<tbody>
<tr>
<td>Engine - Common Rail</td>
<td>CI-4</td>
<td>10W40</td>
<td>Number of (6 syl. = 26 l)</td>
<td>500 h</td>
</tr>
<tr>
<td>Gearbox</td>
<td>GL–5</td>
<td>80W90</td>
<td>85W140</td>
<td>1,000 h</td>
</tr>
<tr>
<td>Final drives, front</td>
<td>GL–5</td>
<td>80W90</td>
<td>85W140</td>
<td>1,500 h</td>
</tr>
<tr>
<td>Final drives, rear</td>
<td>GL–5</td>
<td>80W90</td>
<td>85W140</td>
<td>1,500 h</td>
</tr>
<tr>
<td>Hydraulics ¹</td>
<td>Shell Esso</td>
<td>Tellus S4 VX 32 J–35 TellusOil TX32 Tellus S4 VX 32 J–35 TellusOil TX46</td>
<td>200</td>
<td>1,500 h</td>
</tr>
<tr>
<td>Lubrication points</td>
<td>CB/CC</td>
<td>10W30</td>
<td>15W40</td>
<td>–</td>
</tr>
<tr>
<td>Grease points</td>
<td>Lithium grease</td>
<td>NLGI 2</td>
<td>NLGI 2</td>
<td>–</td>
</tr>
<tr>
<td>AC oil</td>
<td>PAG</td>
<td>500 SUS</td>
<td>500 SUS</td>
<td>1.8 dl initial fill</td>
</tr>
<tr>
<td>AC oil</td>
<td>HFC R134a</td>
<td>–</td>
<td>–</td>
<td>1.05 kg</td>
</tr>
<tr>
<td>Crane turning motor</td>
<td>See the crane manual</td>
<td>–</td>
<td>–</td>
<td>1000 h</td>
</tr>
<tr>
<td>Chain oil</td>
<td>See harvester head manual</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
</tbody>
</table>

¹ If you want to use biodegradable hydraulic oils, consult the Manufacturer.

The combine leaves the factory filled with oil intended to be used in temperatures -10...+30°C except with Shell Tellus Arctic 32 in the traction hydraulic system. With refills it is advisable to start using oil types intended for local temperatures.

Initial fills:
- Engine: Shell Rimula R5 E 10W-40
- Gearbox: Shell Spirax HD 80W-90
- Hydraulics: Shell Tellus S4 VX 32
- Lubrication grease: SHELL Rhodina Grease EP2

The guarantee is valid only when lubricants in compliance with the initial fill lubricants are used!

Correct lubrication is of major importance to the perfect functioning and long working life of the forest harvester, due to which the lubrication recommendations shall be followed carefully while simultaneously monitoring if any place requires more lubrication.

All the lubricants shall be free from impurities. Even the slightest impurities may cause damage. Oil fillers and nipples shall be wiped clean. Apply grease on the nipples in accordance with the lubrication table. Apply machine or engine oil to places to be oiled.
Lubrication diagrams

Lubrication of crane and changing of oil in turning motor

Lubricate the crane in compliance with the enclosed table. Use molybdenum grease (~2%) on articulation bearings and crane sliding bearings. Multi-purpose grease can be used elsewhere. Note! It is absolutely forbidden to use greases containing molybdenum sulphide MoS2 to grease the crane slewing bearing. Change the oil in the turning motor gear and brake in spring and autumn or every 1,000 hours. See further instructions in the crane manual.

<table>
<thead>
<tr>
<th>Ref.</th>
<th>Point</th>
<th>Pcs</th>
<th>Function</th>
<th>Interval (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Turning motor gear</td>
<td>1</td>
<td>Check / oil change</td>
<td>10 / 1,000</td>
</tr>
<tr>
<td>2</td>
<td>Brake</td>
<td>1</td>
<td>Check / oil change</td>
<td>10 / 100</td>
</tr>
<tr>
<td>3</td>
<td>Open gearwheel</td>
<td>1</td>
<td>Grease</td>
<td>10</td>
</tr>
<tr>
<td>4</td>
<td>Circular bearing</td>
<td>1</td>
<td>Grease with</td>
<td>10</td>
</tr>
<tr>
<td>5</td>
<td>Articular - and slide bearings</td>
<td>14</td>
<td>Grease with</td>
<td>10</td>
</tr>
<tr>
<td>6</td>
<td>Outer surface of crane extension</td>
<td>1</td>
<td>Grease</td>
<td>50 (SAE 10W50)</td>
</tr>
<tr>
<td>7</td>
<td>Inner surface of crane extension</td>
<td>1</td>
<td>Grease</td>
<td>50 (SAE 10W50)</td>
</tr>
</tbody>
</table>
Summary of periodical procedures

The summary always includes checks and service performed at shorter intervals. For more detailed crane and harvester head service instructions, see the respective manuals.

Daily or every 8 hours:
1. Check the engine oil level
2. Check the radiator coolant level
3. Check the hydraulic oil level
4. Lubricate the points to be lubricated daily
5. Clean the coolers and the grille
6. Check the tyre air pressure visually
7. Check for any fluid and oil leakage
8. Check the connections

Weekly or every 50 hours:
1. Lubricate all the points specified in the lubrication table

Every 100 hours:
1. Clean the engine air filter (*)
2. Check the battery fluid level
3. Clean the breather area on the oil tank
4. Check the condition of the power transmission equipment
5. Clean the cab air filter
6. Check the gearbox oil level
7. Check the light functions
8. Check the oil level in final drives
9. Drain water out of the water separator
10. Check the brake functions
11. Check the belt tension
12. Clean the windows
 (*) or when the blockage indicator alarms

Every 500 hours:

- Change the engine oil and filter
- Run the additional heater also outside the heating season
- Replace the hydraulic oil filters after the first 500 operating hours
- Check the hydraulic working pressure and brake pressure
- Check screw tightness after the first 500 operating hours: the middle joint, brakes, reduction gears, rims and crane
- Drain water out of the water separator
- Change the oil in the crane turning motor
- Change the oil in the crane motor turning brake
- Change the hydraulic filters (**) or when the blockage indicator alarms
- Change the gearbox oil
- Check the hydraulic hoses. Replace the hoses at least every 15 years.
- Check the radiator and engine air hoses visually, replace if necessary. Change the engine cooling water hoses at least every five years.
- Adjust the engine valves

Every 1,500 hours:

- Change the oil in final drives
- Change the hydraulic oil
- Check the signal light functions

Every 2000 hours

Inspect and clean the diesel engine injectors (EEM3 service tool)

Every 4000 hours

Check compressor clearances / check the cleanliness of the intercooler element

Every 5000 hours:

- Replace the flexible coupler between the engine and work pump.

Every 6 months:

Service the fire extinguisher

Every 1 year:

- Servicing of the fire extinguishing system

Every 2 years:

- Replace the AC drying cartridge
- Change the engine coolant
Storage when not in use

In case of a longer storage, the pre-storage service is recommended. The pre-storage service can be divided into three parts, in order of performance: cleaning, checking and protection.

Cleaning:
Dirt is efficiently removed from a dry harvester by compressed air. A high-pressure washer may also be used with caution. To reduce drying time, use warm water. Do not direct water jets at the bearings, as the packing does not hold against a strong spray of water. Apply suitable solvent on heavily greasy spots before washing. Start cleaning from the top. Clean the radiator cells by blowing air from the direction of the wings.

Checking:
Take a pen and paper and write down all the shortcomings and required service measures in the following order:
• Condition of the harvester head
• Bearing clearances and attachments
• Wear, corrosion and dents

It is important to have the recorded defects repaired before storage to ensure the efficient functioning of the harvester in the future.

Protection:
Use engine oil or special protective oil in a sprayer.

Places to be protected:
• Scratched paintwork (paint)
• Electrical connections (special protective spray)

Cab ventilation:
Clean the filters. Clean the air channels and the fan unit with its cells. This may be done with a vacuum cleaner.

Air Conditioning:
Clean the air conditioner condenser and vaporiser cells preferably with compressed air.

Engine:
Clean the engine externally.
Replace the fuel filter.
Change the engine oils.
Replace the engine oil filter.
Check the anti-freezing quality of the coolant.
Clean or replace the air filter.
Clean the cable lugs and apply grease to them.

Electrical instruments:
Clean the battery surfaces, check the fluid level and charge the battery full. Charge the battery every three months.
Recommended accessories

Recommended accessories
• Pulse sensors
• Inductive sensors
• Light bulbs
• Connection relays
• Gaskets and packing

For the saw
• Chains
• Spare guide bar

General Parts
• Hexagonal screws M6-M12, the most common lengths of 16-40 mm, strength class min. 8.8.
• Hexagonal nuts M6-M12, strength class 8. A few lock nuts.
• Washers and spring washers, 6.5-13 mm.
• Spring coters, 3-8 mm, lengths 20-50 mm.
• Grease nipples 6 mm and 1/8", straight and angled.
• Fuses 7.5; 10, 15; 25; 40A
Hydraulic diagram part catalogue SR1066

1. Working hydraulic pump
2. Drive hydraulic pump
3. Oil cooling pump
4. Drive motor
5. Left rear motor
6. Right rear motor
7. Rear drive valve
8. 4/2 industrial valve
9. Orifice
10. On/off cavitation valve
11. Pressure reducing valve
12. Crane valve
13. Cab stabilizer valve
14. Harvester head
15. Gear shifter
16. Pressure reducing valve
17. Frame lock valve
18. Thermostat valve
19. Oil cooler
20. Suction/return filter
21. Return filter
22. Check valve (4WD disengagement)
23. Front low-pressure valve
24. Rear low-pressure valve
25. On/off-harvester head pressurizing valve
26. Pressure relief valve
27. Shuttle valve
28. Orifice (LS)
29. Pressure gauge (LS)
30. Pressure gauge (pump pressure)
31. Orifice
32. Orifice
33. One-way restrictor valve
34. One-way restrictor valve
35. Pressure transducer (drive)
36. Pressure switch (return filter)
37. Pressure switch (suction/return filter)
38. Pressure switch (case pressure)
39. Cylinder (frame lock)
40. Cylinder (front brakes)
41. Cylinder (parking brake front)
42. Cylinder (differential lock)
43. Hydraulic motor (crane turn)
44. Cylinder (crane lift)
45. Cylinder (crane jib)
46. Cylinder (steering)
47. Cylinder (crane tilt table)
48. Cylinder (crane extension)
49. Cylinder (cab stabilizer)
50. 4/2 industrial valve
51. Accumulator
52. Orifice
53. Valve
54. Valve block UREA (accessory)
55. Urea pump (accessory)
56. Valve
57. Shuttle valve
58. One-way restrictor valve
SR1066
9/2012
HARVESTER
INSTRUCTION MANUAL
motor 1 + MCC2212
motor 4 + MCC2212

MCC MODULE

SHIELDING

P1 P3 P5
46 48 50
45 47 49
P2 P4 P6
P7 P9 P11
P8 P10 P12
22 24 26
21 23 25
19 21 23
18 20 22
17 19 21
16 18 20
15 17 19
13 15 17
12 14 16
11 13 15
10 12 14
9 11 13
8 10 12
7 9 11
6 8 10
5 7 9
Valid for 69 -> SAMPO Programs
ELECTRICAL PARTS

R860707 1066

<table>
<thead>
<tr>
<th>Component</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>EPEC 4W-50 HUB (hub module), keto</td>
</tr>
<tr>
<td>A1</td>
<td>EPEC 4W-50 HUB (hub module), kesla</td>
</tr>
<tr>
<td>A2</td>
<td>EPEC 4W-50 Cabin module, keto</td>
</tr>
<tr>
<td>A2</td>
<td>EPEC 4W-50 Cabin module, kesla</td>
</tr>
<tr>
<td>A3</td>
<td>EPEC Head module version keto 12.46</td>
</tr>
<tr>
<td>A3</td>
<td>EPEC Headmodule version keto 12.53</td>
</tr>
<tr>
<td>A3</td>
<td>EPEC Headmodule version keto 1.25</td>
</tr>
<tr>
<td>A4</td>
<td>Mitron MCI IT motomit4 module</td>
</tr>
<tr>
<td>A5</td>
<td>Mitron MCKC03 switch module</td>
</tr>
<tr>
<td>A6</td>
<td>Mitron MCC Head module</td>
</tr>
<tr>
<td>A7</td>
<td>Dasa module</td>
</tr>
<tr>
<td>A8</td>
<td>Epec 4W30 Cabin module</td>
</tr>
<tr>
<td>B2</td>
<td>Temperature sensor hydraulic oil tank</td>
</tr>
<tr>
<td>B3</td>
<td>temperature sensor motor</td>
</tr>
<tr>
<td>B5</td>
<td>Fuel sensor</td>
</tr>
<tr>
<td>B6</td>
<td>Inductive sensor perambulator</td>
</tr>
<tr>
<td>B7</td>
<td>Inductive sensor perambulator</td>
</tr>
<tr>
<td>B8</td>
<td>Inductive sensor saw home</td>
</tr>
<tr>
<td>B9</td>
<td>Pulse sensor diameter</td>
</tr>
<tr>
<td>B10</td>
<td>Inductive sensor saw</td>
</tr>
<tr>
<td>B11</td>
<td>Inductive sensor saw</td>
</tr>
<tr>
<td>B12</td>
<td>Foot pedal</td>
</tr>
<tr>
<td>B13</td>
<td>driving speed potentiometer</td>
</tr>
<tr>
<td>B14</td>
<td>hydraulics temperature sensor gear box</td>
</tr>
<tr>
<td>B15</td>
<td>Hall sensor left back</td>
</tr>
<tr>
<td>B16</td>
<td>Hall sensor right back</td>
</tr>
<tr>
<td>B17</td>
<td>Hand throttle</td>
</tr>
<tr>
<td>B18</td>
<td>Cabin tilt sensor sideways</td>
</tr>
<tr>
<td>B19</td>
<td>Cabin tilt sensor front/back</td>
</tr>
<tr>
<td>B20</td>
<td>Body-link angle sensor</td>
</tr>
<tr>
<td>B21</td>
<td>Gearbox speed sensor</td>
</tr>
<tr>
<td>B27</td>
<td>worklight motor room</td>
</tr>
<tr>
<td>B29</td>
<td>rotator light</td>
</tr>
<tr>
<td>B30</td>
<td>blinker right front</td>
</tr>
<tr>
<td>B31</td>
<td>blinker right back</td>
</tr>
<tr>
<td>B32</td>
<td>blinker left back</td>
</tr>
<tr>
<td>B33</td>
<td>blinker left front</td>
</tr>
<tr>
<td>B34</td>
<td>park light left front</td>
</tr>
<tr>
<td>B35</td>
<td>park light right front</td>
</tr>
<tr>
<td>B36</td>
<td>park light left back</td>
</tr>
<tr>
<td>B37</td>
<td>park light right back</td>
</tr>
<tr>
<td>B38</td>
<td>drive light left</td>
</tr>
<tr>
<td>B39</td>
<td>drive light right</td>
</tr>
<tr>
<td>B40</td>
<td>drive light long left</td>
</tr>
<tr>
<td>B41</td>
<td>drive light long right</td>
</tr>
<tr>
<td>B42</td>
<td>cabin inside light</td>
</tr>
<tr>
<td>B43</td>
<td>light gauge, hydr.temp hydraulicmotor</td>
</tr>
<tr>
<td>B44</td>
<td>light gauge, fuel hydraulicmotor</td>
</tr>
<tr>
<td>B45</td>
<td>light gauge, engine temp.</td>
</tr>
<tr>
<td>B46</td>
<td>light, cabin temp. panel</td>
</tr>
<tr>
<td>B47</td>
<td>boom bottom light left</td>
</tr>
<tr>
<td>B48</td>
<td>boom bottom light right</td>
</tr>
<tr>
<td>C1</td>
<td>Capacitor 1000 Mikro F A4 printer</td>
</tr>
<tr>
<td>E1</td>
<td>worklight top</td>
</tr>
<tr>
<td>E2</td>
<td>worklight top</td>
</tr>
<tr>
<td>E3</td>
<td>worklight top</td>
</tr>
<tr>
<td>E4</td>
<td>worklight top</td>
</tr>
<tr>
<td>E5</td>
<td>worklight extra light</td>
</tr>
<tr>
<td>E6</td>
<td>worklight left door</td>
</tr>
<tr>
<td>E7</td>
<td>worklight right door</td>
</tr>
<tr>
<td>E8</td>
<td>worklight cabin front module left</td>
</tr>
<tr>
<td>E9</td>
<td>worklight cabin front module right</td>
</tr>
<tr>
<td>E10</td>
<td>worklight drive lightarm right</td>
</tr>
<tr>
<td>E11</td>
<td>worklight drive lightarm left</td>
</tr>
<tr>
<td>E12</td>
<td>boom bottom light left</td>
</tr>
<tr>
<td>E13</td>
<td>boom bottom light right</td>
</tr>
<tr>
<td>E14</td>
<td>roof light left side back</td>
</tr>
<tr>
<td>E15</td>
<td>roof light right side back</td>
</tr>
<tr>
<td>E16</td>
<td>roof light left side front</td>
</tr>
<tr>
<td>E17</td>
<td>roof light right side front</td>
</tr>
<tr>
<td>E18</td>
<td>roof light left front angle</td>
</tr>
<tr>
<td>E19</td>
<td>roof light right front angle</td>
</tr>
<tr>
<td>E20</td>
<td>roof light left front middle</td>
</tr>
<tr>
<td>E21</td>
<td>roof light right front middle</td>
</tr>
<tr>
<td>E22</td>
<td>roof light left front inside</td>
</tr>
<tr>
<td>E23</td>
<td>roof light right front inside</td>
</tr>
<tr>
<td>E24</td>
<td>roof light left back angle</td>
</tr>
<tr>
<td>E25</td>
<td>roof light right back angle</td>
</tr>
<tr>
<td>E27</td>
<td>worklight motor room</td>
</tr>
<tr>
<td>E29</td>
<td>rotator light</td>
</tr>
<tr>
<td>E30</td>
<td>blinker right front</td>
</tr>
<tr>
<td>E31</td>
<td>blinker right back</td>
</tr>
<tr>
<td>E32</td>
<td>blinker left back</td>
</tr>
<tr>
<td>E33</td>
<td>blinker left front</td>
</tr>
<tr>
<td>E34</td>
<td>park light left front</td>
</tr>
<tr>
<td>E35</td>
<td>park light right front</td>
</tr>
<tr>
<td>E36</td>
<td>park light left back</td>
</tr>
<tr>
<td>E37</td>
<td>park light right back</td>
</tr>
<tr>
<td>E38</td>
<td>drive light left</td>
</tr>
<tr>
<td>E39</td>
<td>drive light right</td>
</tr>
<tr>
<td>E40</td>
<td>drive light long left</td>
</tr>
<tr>
<td>E41</td>
<td>drive light long right</td>
</tr>
<tr>
<td>E42</td>
<td>cabin inside light</td>
</tr>
<tr>
<td>E43</td>
<td>light gauge, hydr.temp hydraulicmotor</td>
</tr>
<tr>
<td>E44</td>
<td>light gauge, fuel hydraulicmotor</td>
</tr>
<tr>
<td>E45</td>
<td>light gauge, engine temp.</td>
</tr>
<tr>
<td>E46</td>
<td>light, cabin temp. panel</td>
</tr>
<tr>
<td>E47</td>
<td>boom bottom light left</td>
</tr>
<tr>
<td>E48</td>
<td>boom bottom light right</td>
</tr>
<tr>
<td>F1</td>
<td>Fuse, blinker left</td>
</tr>
<tr>
<td>F2</td>
<td>fuse, blinker right</td>
</tr>
<tr>
<td>F3</td>
<td>fuse, park light</td>
</tr>
<tr>
<td>F4</td>
<td>fuse, backlight meter</td>
</tr>
<tr>
<td>F5</td>
<td>fuse, headlamp left</td>
</tr>
<tr>
<td>F6</td>
<td>fuse, headlamp right</td>
</tr>
<tr>
<td>F7</td>
<td>fuse, headlamp long left</td>
</tr>
<tr>
<td>F8</td>
<td>fuse, headlamp long right</td>
</tr>
<tr>
<td>F9</td>
<td>fuse, radio, cabin inside, EHS (gearbox)</td>
</tr>
<tr>
<td>Fuse</td>
<td>Description</td>
</tr>
<tr>
<td>------</td>
<td>-------------</td>
</tr>
<tr>
<td>2F2</td>
<td>fuse, working light relays</td>
</tr>
<tr>
<td>2F3</td>
<td>fuse, 24V male, hazard</td>
</tr>
<tr>
<td>2F4</td>
<td>fuse, rotate blinker</td>
</tr>
<tr>
<td>2F5</td>
<td>fuse, blinker</td>
</tr>
<tr>
<td>2F6</td>
<td>fuse, windscreen wiper</td>
</tr>
<tr>
<td>2F7</td>
<td>fuse, brake, body-link lock, CTA control</td>
</tr>
<tr>
<td>2F8</td>
<td>fuse, lubrication</td>
</tr>
<tr>
<td>3F1</td>
<td>fuse, fan, AC</td>
</tr>
<tr>
<td>3F2</td>
<td>fuse, horn</td>
</tr>
<tr>
<td>3F3</td>
<td>fuse, seat</td>
</tr>
<tr>
<td>3F4</td>
<td>fuse, main relays, measuring device, IQAN control</td>
</tr>
<tr>
<td>3F5</td>
<td>fuse, meter, warning light</td>
</tr>
<tr>
<td>3F6</td>
<td>fuse, PC voltage reduce</td>
</tr>
<tr>
<td>3F7</td>
<td>fuse, fire protection</td>
</tr>
<tr>
<td>3F8</td>
<td>fuse, automatic lubrication system</td>
</tr>
<tr>
<td>4F1</td>
<td>fuse, working light crane</td>
</tr>
<tr>
<td>4F2</td>
<td>fuse, working light</td>
</tr>
<tr>
<td>4F3</td>
<td>fuse, working light</td>
</tr>
<tr>
<td>4F4</td>
<td>fuse, working light</td>
</tr>
<tr>
<td>4F5</td>
<td>fuse, working light</td>
</tr>
<tr>
<td>4F6</td>
<td>fuse, working light</td>
</tr>
<tr>
<td>4F7</td>
<td>fuse, working light door left, right</td>
</tr>
<tr>
<td>4F8</td>
<td>fuse, working light more light</td>
</tr>
<tr>
<td>5F1</td>
<td>fuse, main circuit K3 +15</td>
</tr>
<tr>
<td>5F2</td>
<td>fuse, working light front at the bottom right, left</td>
</tr>
<tr>
<td>5F3</td>
<td>fuse, main circuit K7 +15</td>
</tr>
<tr>
<td>5F4</td>
<td>fuse, main circuit ignition key +30</td>
</tr>
<tr>
<td>5F5</td>
<td>fuse, AC</td>
</tr>
<tr>
<td>5F6</td>
<td>fuse, measuring device</td>
</tr>
<tr>
<td>5F7</td>
<td>fuse, cabin connector X39:1</td>
</tr>
<tr>
<td>5F8</td>
<td>fuse, IQAN XA2:AO</td>
</tr>
<tr>
<td>6F1</td>
<td>fuse, main fuse, IQAN control, fuel pumps and valve</td>
</tr>
<tr>
<td>6F2</td>
<td>fuse, IQAN XT2-A1</td>
</tr>
<tr>
<td>6F3</td>
<td>fuse, IQAN XA2:A1</td>
</tr>
<tr>
<td>6F4</td>
<td>fuse, negative pressure pump</td>
</tr>
<tr>
<td>6F5</td>
<td>fuse, cabin connector X39:2</td>
</tr>
<tr>
<td>6F6</td>
<td></td>
</tr>
<tr>
<td>6F7</td>
<td>fuse, hydraulics pump solenoid</td>
</tr>
<tr>
<td>6F8</td>
<td>fuse, cabin connector X39:3</td>
</tr>
<tr>
<td>7F1</td>
<td>fuse, male cabin front</td>
</tr>
<tr>
<td>7F2</td>
<td>fuse, PC preheater</td>
</tr>
<tr>
<td>7F3</td>
<td>fuse,</td>
</tr>
<tr>
<td>7F4</td>
<td>fuse,</td>
</tr>
<tr>
<td>7F5</td>
<td>fuse,</td>
</tr>
<tr>
<td>Signal Light</td>
<td>Relay/Function</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------</td>
</tr>
<tr>
<td>H5</td>
<td>Hydraulic oil filter sweep</td>
</tr>
<tr>
<td>H6</td>
<td>Hydraulic oil temperature</td>
</tr>
<tr>
<td>H7</td>
<td>Headlamp long</td>
</tr>
<tr>
<td>H8</td>
<td>Blinker</td>
</tr>
<tr>
<td>H9</td>
<td>Hydraulic oil filter (drive)</td>
</tr>
<tr>
<td>H10</td>
<td>Hydraulic oil filter (pressure)</td>
</tr>
<tr>
<td>H22</td>
<td>Motor air filter</td>
</tr>
<tr>
<td>H23</td>
<td>Empty</td>
</tr>
<tr>
<td>H38</td>
<td>CTA diagnostic</td>
</tr>
<tr>
<td>H31</td>
<td>Gear 1</td>
</tr>
<tr>
<td>H32</td>
<td>Gear 2</td>
</tr>
<tr>
<td>H33</td>
<td>Gear 3</td>
</tr>
<tr>
<td>H34</td>
<td>Gear N</td>
</tr>
<tr>
<td>H35</td>
<td>Headlamp glow (CTA)</td>
</tr>
<tr>
<td>H36</td>
<td>Alarm light fire protection</td>
</tr>
<tr>
<td>K1</td>
<td>Emergency stop</td>
</tr>
<tr>
<td>K10</td>
<td>Drive/place</td>
</tr>
<tr>
<td>K11</td>
<td>Warning</td>
</tr>
<tr>
<td>K12</td>
<td>Working light</td>
</tr>
<tr>
<td>K15</td>
<td>Start</td>
</tr>
<tr>
<td>K16</td>
<td>Park brake</td>
</tr>
<tr>
<td>K17</td>
<td>Working light</td>
</tr>
<tr>
<td>K19</td>
<td>Working light</td>
</tr>
<tr>
<td>K2</td>
<td>Working light crane</td>
</tr>
<tr>
<td>K27</td>
<td>Warning enter</td>
</tr>
<tr>
<td>K29</td>
<td>Back brake</td>
</tr>
<tr>
<td>K3</td>
<td>AC, fan, seat main circuit</td>
</tr>
<tr>
<td>K30</td>
<td>Working light door</td>
</tr>
<tr>
<td>K31</td>
<td>More working light</td>
</tr>
<tr>
<td>K32</td>
<td>AC</td>
</tr>
<tr>
<td>K33</td>
<td>Hydraulic oil height level</td>
</tr>
<tr>
<td>K36</td>
<td>Measuring device</td>
</tr>
<tr>
<td>K37</td>
<td>IQAN</td>
</tr>
<tr>
<td>XA2-AO,LX0-LX1,MD3</td>
<td>Relay, IQAN</td>
</tr>
<tr>
<td>K38</td>
<td>IQAN XA2-A1</td>
</tr>
<tr>
<td>K4</td>
<td>Blinker</td>
</tr>
<tr>
<td>K42</td>
<td>Head open IQAN</td>
</tr>
<tr>
<td>K43</td>
<td>Head close IQAN</td>
</tr>
<tr>
<td>K48</td>
<td>Hydraulic oil pump</td>
</tr>
<tr>
<td>K49</td>
<td>Solenoid oil pump</td>
</tr>
<tr>
<td>K5</td>
<td></td>
</tr>
<tr>
<td>K51</td>
<td>Fall up IQAN</td>
</tr>
<tr>
<td>K52</td>
<td>Fall down IQAN</td>
</tr>
<tr>
<td>K6</td>
<td></td>
</tr>
<tr>
<td>K60</td>
<td></td>
</tr>
<tr>
<td>K61</td>
<td></td>
</tr>
<tr>
<td>K72</td>
<td>Front brake</td>
</tr>
<tr>
<td>K74</td>
<td>Windscreen single-shot</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Relay/Function</th>
<th>Relay/Function</th>
</tr>
</thead>
<tbody>
<tr>
<td>K75</td>
<td>Motor heater fan control</td>
</tr>
<tr>
<td>K76</td>
<td>More water pump control</td>
</tr>
<tr>
<td>K104</td>
<td>IQAN XT2-A1</td>
</tr>
<tr>
<td>K105</td>
<td>CTA, ign, fuel pump</td>
</tr>
<tr>
<td>K106</td>
<td>Gear on</td>
</tr>
<tr>
<td>K107</td>
<td>Rear brake</td>
</tr>
<tr>
<td>M1</td>
<td>Start motor</td>
</tr>
<tr>
<td>M2</td>
<td>Motor, windshield</td>
</tr>
<tr>
<td>M3</td>
<td>Motor, windshield wash</td>
</tr>
<tr>
<td>M4</td>
<td>Motor, fan</td>
</tr>
<tr>
<td>M5</td>
<td>Motor heater more heater fuel pump</td>
</tr>
<tr>
<td>M6</td>
<td>Motor heater more heater water pump</td>
</tr>
<tr>
<td>M7</td>
<td>Motor, hydraulic negative pressure</td>
</tr>
<tr>
<td>M8</td>
<td>Motor, fuel pump more pump</td>
</tr>
<tr>
<td>M9</td>
<td>Motor, hydraulic pump</td>
</tr>
<tr>
<td>M10</td>
<td>Motor heater</td>
</tr>
<tr>
<td>M11</td>
<td>Seat air compressor</td>
</tr>
<tr>
<td>N1</td>
<td>Switchbox, preselection</td>
</tr>
<tr>
<td>N2</td>
<td>Mouse</td>
</tr>
<tr>
<td>P1</td>
<td>Display 4W50.keto</td>
</tr>
<tr>
<td>P2</td>
<td>Display 4W50.kesla</td>
</tr>
<tr>
<td>P3</td>
<td>Display 4W30.keto</td>
</tr>
<tr>
<td>P4</td>
<td>Meter, motor temperature</td>
</tr>
<tr>
<td>P5</td>
<td>Meter, hydraulic oil temperature</td>
</tr>
<tr>
<td>Q1</td>
<td>Electrical mainswitch</td>
</tr>
<tr>
<td>S1</td>
<td>Switch, main circuit control</td>
</tr>
<tr>
<td>S10</td>
<td>Switch, blinker</td>
</tr>
<tr>
<td>S11</td>
<td>Switch, rotate blinker</td>
</tr>
<tr>
<td>S12</td>
<td>Switch, light</td>
</tr>
<tr>
<td></td>
<td>Switch Description</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>S13</td>
<td>switch, windscreen</td>
</tr>
<tr>
<td>S14</td>
<td>switch, windscreen wash</td>
</tr>
<tr>
<td>S15</td>
<td>switch, horn</td>
</tr>
<tr>
<td>S16</td>
<td>switch, park brake</td>
</tr>
<tr>
<td>S17</td>
<td>switch, seatheater</td>
</tr>
<tr>
<td>S18</td>
<td>switch, fan</td>
</tr>
<tr>
<td>S19</td>
<td>switch, AC control</td>
</tr>
<tr>
<td>S20</td>
<td>Pressure switch AC kompressor</td>
</tr>
<tr>
<td>S21</td>
<td>switch inside light</td>
</tr>
<tr>
<td>S22</td>
<td>switch working light front</td>
</tr>
<tr>
<td>S23</td>
<td>switch, working light</td>
</tr>
<tr>
<td>S24</td>
<td>switch, body.lock 0-1-A</td>
</tr>
<tr>
<td>S25</td>
<td>switch, workbrake</td>
</tr>
<tr>
<td>S26</td>
<td>switch, steering/load</td>
</tr>
<tr>
<td>S27</td>
<td>switch, steering/load</td>
</tr>
<tr>
<td>S28</td>
<td>limit switch, door measuring device</td>
</tr>
<tr>
<td>S29</td>
<td>pressureswitch filter (drive)</td>
</tr>
<tr>
<td>S30</td>
<td>pressureswitch filter</td>
</tr>
<tr>
<td>S31</td>
<td>limit switch, hydraulic oil tank breather cock</td>
</tr>
<tr>
<td>S32</td>
<td>limit switch, hydraulic oil tank breather cock</td>
</tr>
<tr>
<td>S33</td>
<td>switch, four wheel</td>
</tr>
<tr>
<td>S34</td>
<td>switch light change</td>
</tr>
<tr>
<td>S35</td>
<td>switch, diagnostic</td>
</tr>
<tr>
<td>S36</td>
<td>switch, diagnostic</td>
</tr>
<tr>
<td>S37</td>
<td>switch, diagnostic</td>
</tr>
<tr>
<td>S38</td>
<td>switch, diagnostic</td>
</tr>
<tr>
<td>S39</td>
<td>switch, diagnostic</td>
</tr>
<tr>
<td>S40</td>
<td>switch, balance gear lock front</td>
</tr>
<tr>
<td>S41</td>
<td>switch, warning enter</td>
</tr>
<tr>
<td>S42</td>
<td>switch, warning enter</td>
</tr>
<tr>
<td>S43</td>
<td>switch, warning enter</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>R3 resistor, 120 ohm EHS CAN</td>
<td>Y3 Magnetic valve, rotate left</td>
</tr>
<tr>
<td>R4 resistor, 120 ohm EHS CAN</td>
<td>Y4 Magnetic valve, rotate right</td>
</tr>
<tr>
<td>R5 Glow resistor, 1,2kW</td>
<td>Y5 Magnetic valve, lift down</td>
</tr>
<tr>
<td>U2 voltage reducer, EHS</td>
<td>Y6 Magnetic valve, lift up</td>
</tr>
<tr>
<td>U3 voltage reducer, PC</td>
<td>Y7 Magnetic valve, tilt down</td>
</tr>
<tr>
<td>V1 Diode, motor air filter</td>
<td>Y8 Magnetic valve, tilt up</td>
</tr>
<tr>
<td>V2 Diode,</td>
<td></td>
</tr>
<tr>
<td>V3 Diode, chargelight 1</td>
<td>Y70 Magnetic valve, park brake</td>
</tr>
<tr>
<td>V5 Diode,</td>
<td>Y71 Crane turn, brake</td>
</tr>
<tr>
<td>V6 Diode, warning hydraulics oil filter</td>
<td>Y72 Magnetic valve, front brake</td>
</tr>
<tr>
<td>V7 Diode, warning oil filter (drive)</td>
<td>Y61 Magnetic valve, left hydraulics motor</td>
</tr>
<tr>
<td>V8 Diode, chargelight 2</td>
<td>Y62 Magnetic valve, left hydraulics motor</td>
</tr>
<tr>
<td>V9 Diode, radio</td>
<td>Y63 Magnetic valve, right hydraulics motor</td>
</tr>
<tr>
<td>V17 Diode, radio</td>
<td>Y64 Magnetic valve, right hydraulics motor</td>
</tr>
<tr>
<td>V19 Diode, radio</td>
<td>Y67 Magnetic valve, workpump angle</td>
</tr>
<tr>
<td>V20 Diode, gear 1</td>
<td>Y68 Magnetic valve, drive pump front</td>
</tr>
<tr>
<td>V21 Diode, gear 2</td>
<td>Y69 Magnetic valve, drive pump back</td>
</tr>
<tr>
<td>V22 Diode, gear 3</td>
<td>Y76 Magnetic valve, four wheel release work port</td>
</tr>
<tr>
<td>V23 Diode, gear 2 and 3</td>
<td></td>
</tr>
<tr>
<td>V26 Diode, blinker signal light right</td>
<td></td>
</tr>
<tr>
<td>V27 Diode, blinker signal light left</td>
<td></td>
</tr>
<tr>
<td>V28 Diode, warning hydraulics oil</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td>V29 Diode, warning motor oil</td>
<td></td>
</tr>
<tr>
<td>pressure</td>
<td></td>
</tr>
<tr>
<td>V30 Diode, warning motor temperature</td>
<td></td>
</tr>
<tr>
<td>V35 Diode, warning hydraulics oil</td>
<td></td>
</tr>
<tr>
<td>height level</td>
<td></td>
</tr>
<tr>
<td>V36 Diode, warning motor</td>
<td></td>
</tr>
<tr>
<td>V39 Diode, cabin right cylinder</td>
<td></td>
</tr>
<tr>
<td>V40 Diode, windowscreen wash</td>
<td></td>
</tr>
<tr>
<td>V42 Diode, hornes</td>
<td></td>
</tr>
<tr>
<td>V42 Diode, warning blinker enter relay</td>
<td></td>
</tr>
<tr>
<td>V50 Diode, hydraulics pressure</td>
<td></td>
</tr>
<tr>
<td>measuring device Y75,1</td>
<td></td>
</tr>
<tr>
<td>V51 Diode, hydraulics pressure</td>
<td></td>
</tr>
<tr>
<td>measuring device Y75,2</td>
<td></td>
</tr>
<tr>
<td>Y1 Magnetic valve, body lock</td>
<td></td>
</tr>
<tr>
<td>Y11 Magnetic valve, steering left</td>
<td></td>
</tr>
<tr>
<td>Y12 Magnetic valve, steering right</td>
<td></td>
</tr>
<tr>
<td>Y13 Magnetic valve, front tilt out</td>
<td></td>
</tr>
<tr>
<td>Y14 Magnetic valve, front tilt in</td>
<td></td>
</tr>
<tr>
<td>Y15 Magnetic valve, extencion in</td>
<td></td>
</tr>
<tr>
<td>Y16 Magnetic valve, extencion out</td>
<td></td>
</tr>
<tr>
<td>Y2 Magnetic valve, park brake free</td>
<td></td>
</tr>
<tr>
<td>Y21 Magnetic switch, kompressor</td>
<td></td>
</tr>
<tr>
<td>Y23 Magnetic valve, balance gear lock front</td>
<td></td>
</tr>
<tr>
<td>Y24 Magnetic valve, four wheel release</td>
<td></td>
</tr>
<tr>
<td>X1:1 Diode, warning hydraulics oil filter</td>
<td></td>
</tr>
<tr>
<td>X1:2 Diode,</td>
<td></td>
</tr>
<tr>
<td>X1:3 Diode, warning oil filter (drive)</td>
<td></td>
</tr>
<tr>
<td>X1:4 Diode, warning hydraulics oil</td>
<td></td>
</tr>
<tr>
<td>temperature</td>
<td></td>
</tr>
<tr>
<td>X1:5 Diode,</td>
<td></td>
</tr>
<tr>
<td>X1:6 Diode, warning motor oil</td>
<td></td>
</tr>
<tr>
<td>pressure</td>
<td></td>
</tr>
<tr>
<td>X1:7 Diode, warning motor temperature</td>
<td></td>
</tr>
<tr>
<td>X1:8 Diode,</td>
<td></td>
</tr>
<tr>
<td>X1:9 Diode, warning hydraulics oil</td>
<td></td>
</tr>
<tr>
<td>height level</td>
<td></td>
</tr>
<tr>
<td>X1:10 Diode, motor air filter</td>
<td></td>
</tr>
</tbody>
</table>
X22:9 reserve
X24:1 drivepump
X24:2 drivepump front Y68
X24:3 drivepump back Y69
X24:4 work pump
X24:5 work pump angle limit
X24:6 hydraulics pressure EHS K75
X24:7 four wheel signal light
X24:8
X24:9

X25:1 Diode, windscreen wash
X25:2 Diode, horne
X25:3 Diode, chargelight 1
X25:4 Diode, chargelight 2
X25:5
X25:6 Diode, blinker signal light right
X25:7 Diode, blinker signal light left
X25:8
X25:9 Diode, radio
X25:10 Diode, radio
X25:11 Diode, radio
X25:12

X26:1
X26:2 Diode, radio
X26:3 Diode, radio
X26:4 Diode, radio
X26:5
X26:6 Diode, blinker signal light right
X26:7 Diode, blinker signal light left
X26:8
X26:9 Diode, chargelight 2
X26:10 Diode, chargelight 1
X26:11 Diode, horne
X26:12 Diode, windscreen wash

X27:1 Drivepedal +Vref
X27:2 Drivepedal -Vref
X27:3 Drivepedal signal

X3:1 place/move control K10
X3:2 four wheel control XT2
X3:3
X3:4 supply XA2:AO K37
X3:5 supply XA2:A1 K38
X3:6 back brake Y2
X3:7 body lock Y1
X3:8 supply male X7
X3:9 four wheel signal light

X31:1
X31:2 crane move slow sensor
X31:3 XA2:A1

X32:1 more working light reserve cabin right front
X32:2 right front park light
X32:3 right headlamp
X32:4 right headlamp long
X32:5 right blinker
X32:6
X32:7
X32:8
X32:9 male supply X7

X33:1 working light door
X33:2 working light E1,E2,E3,E4

X35:1 Crane turn, brake Y71
X35:2 XA2-AO gear speed sensor

X37:1 clock switch light
X37:2 clock switch supply +15
X37:3 clock switch ground

X42:1 P2 foot pedal supply +Vref
X42:2 P1 foot pedal supply +Vref
X42:3 P1 foot pedal ground -Vref
X42:4 P1 foot pedal signal
X42:5 P2 foot pedal ground -Vref
X42:6 P2 foot pedal signal

X43:1 cabin tilt sensor side +Vref
X43:2 cabin tilt sensor signal
X43:3 cabin tilt sensor side ground

X44:1 cabin tilt sensor front/back +Vref
X44:2 cabin tilt sensor signal
X44:3 cabin tilt sensor front/back ground
X45:A hand throttle supply +Vref
X45:B hand throttle signal
X45:C hand throttle ground -Vref

X46:1 body angle sensor ground -Vref
X46:2 bodyt angle sensor supply +Vref
X46:3 body angle sensor signal

X47:1 electrical mainswitch (fire
protection brittle ground)
X47:2 diagnostic switch S38
X47:3 diagnostic signal light
X47:4 glow signal light
X47:5 supply control CTA,fuel more pump
X47:6 electrical mainswitch control
X47:7 electrical mainswitch control
X47:8 light back E36 JA E37
X47:9 AC control relay
X48:1 free wire 36 XA:1
X48:2 free wire 37 XA:4
X48:3 free wire 38 XA:5
X48:4 free wire 39 XA:6
X48:5 free wire 42 XA:34
X48:6
X48:7
X48:8 Free wire 50 XA:46
X48:9 free wire 51 XA:47
X49:1 free wire 40XA:32
X49:2 free wire 41 XA:33
X49:3 free wire 43 XA:39
X49:4 free wire 44 XA:40
X49:5 free wire 45 XA:41
X49:6 free wire 46 XA:42
X49:7 free wire 47 XA:43
X49:8 free wire 48 XA:44
X49:9 free wire 49 XA:45
X4:1 ground light left
X4:2 headlamp left
X4:3 headlamp right
X4:4 ground light
X4:5 male +24V
X4:6 ground male
X4:7 crane rotate left Y3
X4:8 crane rotate right Y4
X4:9 crane rotate
X4:10 crane lift up Y6
X4:11 crane lift down Y5
X4:12 crane lift
X4:13 crane tilt front Y8
X4:14 crane tilt back Y7
X4:15 crane tilt
X4:16 steering left Y11
X4:17 steering right Y12
X4:18 steering
X4:19 extension out Y15
X4:20 extension in Y16
X4:21 crane extension
X4:22 front tilt back Y13
X4:23 front tilt front Y14
X4:24 crane tilt
X4:25

White square-shaped connector
X5:1 Wiper motor ground
X5:2 Wiper motor return
X5:3 Wiper motor continuous
X5:4
X5:5 Wiper motor speed 2
X5:6 Wiper motor speed 1

Black round-shaped connector
X50:1 iqan left joystick LX-1 DI A
X50:2 iqan left joystick LX-1 DI B
X50:3 iqan left joystick LX-1 DI C
X50:4 iqan left joystick LX-1 DI D
X50:5 iqan left joystick LX-1 DI E
X50:6 iqan left joystick LX-1 DI F
X50:7 iqan left joystick LX-1 -VREF
X50:8 iqan left joystick LX-1 +VREF
X50:9 iqan left joystick LX-1 +BAT
X51:1 iqan right joystick LX-0 DI A
X51:2 iqan right joystick LX-0 DI B
X51:3 iqan right joystick LX-0 DI C
X51:4 iqan right joystick LX-0 DI D
X51:5 iqan right joystick LX-0 DI E
X51:6 iqan right joystick LX-0 DI F
X51:7 iqan right joystick LX-0 -VREF
X51:8 iqan right joystick LX-0 +VREF
X51:9 iqan right joystick LX-0 +BAT
X52:1 iqan left joystick LX-1 DI A
X52:2 iqan left joystick LX-1 DI B
X52:3 iqan left joystick LX-1 DI C
X52:4 iqan left joystick LX-1 DI D
X52:5 iqan left joystick LX-1 DI E
X52:6 iqan left joystick LX-1 DI F
X52:7 iqan left joystick LX-1 -VREF
X52:8 iqan left joystick LX-1 +VREF
X52:9 iqan left joystick LX-1 +BAT
X52:10iqan left joystick LX-1 VI A
X52:11iqan left joystick LX-1 VI B
X52:12iqan left joystick LX-1 -BAT

X53:1 iqan right joystick LX-0 DI A
X53:2 iqan right joystick LX-0 DI B
X53:3 iqan right joystick LX-0 DI C
X53:4 iqan right joystick LX-0 DI D
X53:5 iqan right joystick LX-0 DI E
X53:6 iqan right joystick LX-0 DI F
X53:7 iqan right joystick LX-0 -VREF
X53:8 iqan right joystick LX-0 +VREF
X53:9 iqan right joystick LX-0 +BAT
X53:10iqan right joystick LX-0 VI A
X53:11iqan right joystick LX-0 VI B
X53:12iqan right joystick LX-0 -BAT

X54:1 iqan left joystick LX-1 +VREF
X54:2 iqan left joystick LX-1 VI A
X54:3 iqan left joystick LX-1 -VREF

X55:1 iqan left joystick LX-1 +VREF
X55:2 iqan left joystick LX-1 VI A
X55:3 iqan left joystick LX-1 -VREF

X56:1 CommonRail supply
X56:2 CommonRail supply
X56:3 CommonRail supply
X56:4 CommonRail supply

X61:1 measuring device +
X61:2 measuring device -
X61:3 measuring device supply in battery 7F8

X62:1 hydraulics pressure Y75,1
X62:2 hydraulics pressure Y75,2
X62:3 hydraulics pressure Y75,1 ground
X62:4 hydraulics pressure Y75,2 ground

X62:5 PC display preheater
X62:6 Free wire 37 in main fuse box

X62:9 fire protection, power supply from battery

X7:1 male +24V
X7:2 male -24V
X8:1 male +24V
X8:2 male -24V

X9/12:1 male +12V
X9/12:2 male -12V
X9/24:1 male +24V
X9/24:2 male -24V

x100:1 windscreen single-shot sweep (switch)
x100:2 windscreen single-shot sweep (ground)

X102:1blinker rotate supply
X102:2blinker rotate ground

X103:1

113:1
113:2 IQAN XT2 -VREF
113:3 IQAN XT2 +VREF
113:4 IQAN XT2 (C1:39)
113:5 free wire 63 mainfusebox
113:6 free wire 62 mainfusebox
113:7 measuring device supply in battery
113:8 supply fan relay K104 in
113:9 supply fan relay K104 out

XA:1 free wire 36 X48:1
XA:2 chargelight 2
XA:3 chargelight 1
XA:4 free wire 37 X48:2
XA:5 free wire 38 X48:3
XA:6 free wire 39 X48:4
XA:7 motor temperature meter
XA:8 mdm and rasio supply memory
XA:9 CAN bus CTA Can HI
XA:10 CAN bus CTA Can Lo
XA:11 CTA diagnostic switch S38
XA:12 CTA diagnostic signal light S38
XA:13 glow signal
XA:14 fuel meter
XA:15 blinker back right
XA:16 blinker back left
XA:17 park light back left right
XA:18 hydraulics oil temperature warning
XA:19 hydraulics oil temperature meter
XA:20 return filter warning
XA:21 motor air filter warning
XA:22 hydraulics oil height level warning
XA:23 AC relay control
XA:24 clockswitch
XA:25 clockswitch
XA:26 clockswitch supply
XA:27 supply CTA fuel more lift pump
XA:28 electrical mainswitch control
XA:29 reserve
XA:30 electrical mainswitch control
XA:31 air filter warning
XA:32 free wire 40 X49:1
XA:33 free wire 41 X49:2
XA:34 free wire 42 X48:5
XA:35 start relay control
XA:36 electrical mainswitch control
XA:37 motor oil pressure warning
XA:38 motor oil temperature warning
XA:39 free wire 43 X49:3
XA:40 free wire 44 X49:4
XA:41 free wire 45 X49:5
XA:42 free wire 46 X49:6
XA:43 free wire 47 X49:7
XA:44 free wire 48 X49:8
XA:45 free wire 49 X49:9
XA:46 free wire 50 X48:8
XA:47 free wire 51 X48:9
XA1:1 AC relay control
XA1:2 AC pressure switch
XA1:3 start relay control
XA1:4 electrical mainswitch control
XA1:5 electrical mainswitch control
XA2:1 clockswitch
XA2:2 clockswitch
XA2:3 clockswitch supply
XA2:4 supply CTA fuel more lift pump
XA2:5 electrical mainswitch control
XA2:6 electrical mainswitch control
XA3:1 fuel sensor supply
XA3:2 fuel sensor ground
XA3:3 fuel sensor signal
XA3:4
XA4/XB4:1 supply drivepump pressure switch and fuel close valve
XA4/XB4:2 ground fuel valve

XA4/XB4:3 hydraulics breather valve closed signal
XA5:1 hydraulics oil down level sensor ground
XA5:2 hydraulics oil down level sensor supply
XA6:1 hydraulics breather valve switch supply
XA6:2 hydraulics breather valve switch supply (pump)

XB:1 PC display preheater
XB:2 free wire
XB:3 free wire
XB:4 free wire XT2-A1 VI J / FI C
XB:5 four wheel control XT2
XB:6 place / move control K10
XB:7
XB:8 XT2-A1 +VREF
XB:9 XT2-A1 -VREF
XB:10 XA2-A1 CAN HI
XB:11 XA2-A1 CAN LO
XB:12 hydraulics pressure supply Y75;1
XB:13 hydraulics pressure supply Y75;2
XB:14 work pump
XB:15 work pump angle limit
XB:16 drive pump
XB:17 drive pump front Y68
XB:18 drive pump
XB:19 drive pump back Y69
XB:20 body lock Y1
XB:21 back brake Y2
XB:22 hydraulics pressure ground
XB:23 hydraulics pressure ground
Y75,1
Y75,2
XB:24 measuring device supply in battery
XB:25 supply XA2-A0 K37
XB:26 supply XA2-A1 K38
XB:27 supply fan
XB:28 supply fan
XB:29 supply male X7
XB:30 XT2 control circuit
XB:31 automatic fire protection
XB1:1 measuring device supply in battery
XB1:2 supply XA2-A0 K37
XB1:3 supply XA2-A1 K38
XB1:4 supply fan
XB1:5 supply fan
XB2:1 supply male X7
XB2:2	free wire 37 main fuse box	ground
XB2:3	automatic fire protection	XD6:2 more fuel pump front sensor
XB2:4	PC display preheater	
XB2:5	free wire	XD7:1 hydraulics oil sensor up
XB2:6	free wire	XD7:2 hydraulics oil sensor up
XB3:1	Iqan XT2 supply	XD8:1 hydraulics oil pump thermistor
XB3:2	fuel pumps, valve, CTA + 15 ignition	ground
XB3:3		XD8:2
XB3:4		XD9:1
		XD9:2
XC:A	working light supply K19 4F6	XD10:1
XC:B	working light supply K30 4F7	XD10:2
XC:C	working light supply K31 4F8	X115:1 crane light voltage
XC:D	working light supply K8 4F4	X115:2 crane light grounding
XC:E	working light supply K12 4F2	X115:3 crane light voltage
XC:F	measuring device supply K36	X115:4 crane light grounding
XC:G	working light supply K91 5F2	
XC:H	working light supply K17 4F5	X115:6 crane slow limit switch, signal
XC:J	main circuit supply +15 K7 5F3	X116:1 CAN LOW MD3
XC:K	working light supply K2 4F1	X116:2 CAN H1 MD3
XC:L	working light supply K9 4F3	X116:3 parking brake (VIN/B)
XC:M	free supply in cabin X39:1 5F7	X116:4 crane slow limit switch, supply
XC:N	main circuit supply +30 5F4	X116:5 + BAT display 10F3 3A
XC:P	free supply in cabin X39:2 6F5	X116:6 crane slow limit switch, signal
XC:R	free supply +15 K3 5F1	
XC:S	free supply in cabin X39:3 6F8	
XD1:1	supply 8F7 motor preheater	X117:1 Switch brake pressure, signal
XD1:2	ground motor preheater and more fuel pump	X117:2 START SIGNAL (XVREFA1:8)
XD1:3	motor preheater control in cabin fan	X117:3 - BAT MD3
XD1:4	more fuel pump control	X117:4 crane slow limit, supply
XD1:5	motor preheater diagnostic	118:1 MD3 DIN-A/VIN-A
XD1:6		118:2 MD3 DIN-F/VIN-F
XD1:7	motor preheater control K105	118:3 MD3 DIN-G/VIN-G
XD1:8		118:4 MD3 DOUT-A
		118:5 MD3 + VREF
XD2:1	motor preheater more fuel pump	MD3 C2
+24V		X119:1 DIN-A/VIN-A
XD2:2	motor preheater more fuel pump	X119:2 parking brake (VIN/B)
-24V		X119:3 brake pressure VIN-C
		X119:4 Start position ignition VIN.D
XD3:1	motor preheater more fuel pump	X119:5 USB - Vref
+24V		X119:6 USB
XD3:2	motor preheater more fuel pump	X119:7 USB
-24V		X119:8 MD3 + Vref
		X119:9 crane move end slow
XD4:1	vacuum pump +24V	X119:10 MD3 DIN-F/VIN-F
XD4:2	vacuum pump -24V	X119:11 MD3 DIN-G/VIN-G
		X119:12 MD3 Dout-A
XD6:1	more fuel pump front sensor	MD3 C1
X120:1-BAT
X120:2 CAN L XA2-A0
X120:3 CAN L MEASURING DEVICE
X120:4 CAN L SISU DIESEL
X120:5
X120:6
X120:7 +RTC memory voltage
X120:8
X120:9 CAN H SISU DIESEL
X120:10 CAN H MEASURING DEVICE
X120:11 CAN H XA2-A0
X120:12 voltage +15

X121:1 CAN LOW XA2-A0/LX0
X121:2 CAN HI XA2-A0/LX0
X121:3 +BAT 10F2 3A +15
X121:4 -BAT

122:1 CAN LOW XA2-A1/XT2
122:2 CAN HI XA2-A1/XT2

123:1
123:2 CAN HI LX0/XA2-A1
123:3
123:4
123:5
123:6 CAN LOW LX0/XA2-A1

X124:1 CAN HI MD3/SISUDIESEL
X124:2 CAN LO MD3/SISUDIESEL

125:1 CAN HI MEASURING DEVICE
125:2 CAN Low MEASURING DEVICE
125:3

X126:1 Crane light left voltage
X126:2 Crane light left ground

VrefA1:1 +Vref XA2:A1
VrefA1:2 -Vref XA2:A1
VrefA1:3 Gear on signal
VrefA1:4 Rear brake release Y2
VrefA1:5 Drive pedal signal
VrefA1:6 Ignition +15 Iqan XA2:A1
VrefA1:7 engine start +50 control
VrefA1:8 start Ignition +50
VrefA1:9 Gear on relay supply

VIN:1 differential lock control S40
VIN:2 Vin-G DIN-G FIN-G XA2:A1
VIN:3
VIN:4 Cout-F Dout-L XA2:A1
VIN:5
VIN:6